Components of the Phenylpropanoid Pathway in the Implementation of the Protective Effect of Sodium Nitroprusside on Wheat under Salinity

Author:

Maslennikova Dilara1ORCID,Ivanov Sergey2ORCID,Petrova Svetlana2,Burkhanova Guzel1ORCID,Maksimov Igor1,Lastochkina Oksana1ORCID

Affiliation:

1. Institute of Biochemistry and Genetics UFRC RAS, 71 Pr. Oktyabrya, 450054 Ufa, Russia

2. Ufa Institute of Chemistry UFRC RAS, 69 Pr. Oktyabrya, 450054 Ufa, Russia

Abstract

Nitric oxide (NO) is a multifunctional, gaseous signaling molecule implicated in both physiological and protective responses to biotic and abiotic stresses, including salinity. In this work, we studied the effects of 200 µM exogenous sodium nitroprusside (SNP, a donor of NO) on the components of the phenylpropanoid pathway, such as lignin and salicylic acid (SA), and its relationship with wheat seedling growth under normal and salinity (2% NaCl) conditions. It was established that exogenous SNP contributed to the accumulation of endogenous SA and increased the level of transcription of the pathogenesis-related protein 1 (PR1) gene. It was found that endogenous SA played an important role in the growth-stimulating effect of SNP, as evidenced by the growth parameters. In addition, under the influence of SNP, the activation of phenylalanine ammonia lyase (PAL), tyrosine ammonia lyase (TAL), and peroxidase (POD), an increase in the level of transcription of the TaPAL and TaPRX genes, and the acceleration of lignin accumulation in the cell walls of roots were revealed. Such an increase in the barrier properties of the cell walls during the period of preadaptation played an important role in protection against salinity stress. Salinity led to significant SA accumulation and lignin deposition in the roots, strong activation of TAL, PAL, and POD, and suppression of seedling growth. Pretreatment with SNP under salinity conditions resulted in additional lignification of the root cell walls, decreased stress-induced endogenous SA generation, and lower PAL, TAL, and POD activities in comparison to untreated stressed plants. Thus, the obtained data suggested that during pretreatment with SNP, phenylpropanoid metabolism was activated (i.e., lignin and SA), which contributed to reducing the negative effects of salinity stress, as evidenced by the improved plant growth parameters.

Funder

Ministry of Science and Higher Education of the Russian Federation

the Center for the Collective Use “Chemistry” of the Ufa Institute of Chemistry UFRC RAS

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3