Identification of the NAC Transcription Factor Family during Early Seed Development in Akebia trifoliata (Thunb.) Koidz

Author:

Liu Huijuan12,Chen Songshu2,Wu Xiaomao2,Li Jinling2,Xu Cunbin12ORCID,Huang Mingjin2,Wang Hualei2,Liu Hongchang2,Zhao Zhi2

Affiliation:

1. College of Life Sciences, Guizhou University, Guiyang 550025, China

2. Guizhou Key Laboratory of Propagation and Cultivation on Medicinal Plants, Guizhou University, Guiyang 550025, China

Abstract

This study aimed to gain an understanding of the possible function of NACs by examining their physicochemical properties, structure, chromosomal location, and expression. Being a family of plant-specific transcription factors, NAC (petunia no apical meristem and Arabidopsis thaliana ATAF1, ATAF2, and CUC2) is involved in plant growth and development. None of the NAC genes has been reported in Akebia trifoliata (Thunb.) Koidz (A. trifoliata). In this study, we identified 101 NAC proteins (AktNACs) in the A. trifoliata genome by bioinformatic analysis. One hundred one AktNACs were classified into the following twelve categories based on the phylogenetic analysis of NAC protein: NAC-a, NAC-b, NAC-c, NAC-d, NAC-e, NAC-f, NAC-g, NAC-h, NAC-i, NAC-j, NAC-k, and NAC-l. The accuracy of the clustering results was demonstrated based on the gene structure and conserved motif analysis of AktNACs. In addition, we identified 44 pairs of duplication genes, confirming the importance of purifying selection in the evolution of AktNACs. The morphology and microstructure of early A. trifoliata seed development showed that it mainly underwent rapid cell division, seed enlargement, embryo formation and endosperm development. We constructed AktNACs co-expression network and metabolite correlation network based on transcriptomic and metabolomic data of A. trifoliata seeds. The results of the co-expression network showed that 25 AtNAC genes were co-expressed with 233 transcription factors. Metabolite correlation analysis showed that 23 AktNACs were highly correlated with 28 upregulated metabolites. Additionally, 25 AktNACs and 235 transcription factors formed co-expression networks with 141 metabolites, based on correlation analysis involving AktNACs, transcription factors, and metabolites. Notably, AktNAC095 participates in the synthesis of 35 distinct metabolites. Eight of these metabolites, strongly correlated with AktNAC095, were upregulated during early seed development. These studies may provide insight into the evolution, possible function, and expression of AktNACs genes.

Funder

Guizhou Province Science and Technology Plan Project

“Hundred” Level Innovative Talent Foundation of Guizhou Province

Research on targeted knockout of fruit cracking-related genes based on CRISPR/Cas9 system

Talent 532 Base Project of Organization Department in Guizhou Province, China

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3