Effects of Ca Sprays on Fruit Ca Content and Yield of Tomato Variety Susceptible to Blossom-End Rot

Author:

Karlsons Andis1,Osvalde Anita1ORCID,Cekstere Gunta1,Āboliņa Laura1ORCID

Affiliation:

1. Institute of Biology, University of Latvia, LV-1004 Riga, Latvia

Abstract

Several factors are involved in the incidence of blossom-end rot (BER) in tomato fruit, but the main one is insufficient Ca uptake and transport through the plant, resulting in Ca deficiency in the fruit. Sprays of Ca-containing products are considered to be a possible measure to overcome the local Ca deficiency in tomato fruit. Therefore, the main objective was to evaluate the effectiveness of additional Ca supply to tomato fruits for increasing Ca content and reducing fruit damage. Sprays of five different commercial preparations containing (Brexil Duo, Calmax Zero N, Ca(NO3)2, CaCl2) or promoting (Greenstim) Ca uptake were tested using BER-sensitive large-fruit variety ‘Beorange’. The experiment was conducted in the commercial greenhouse ‘Getlini EKO’, Latvia, during the autumn–spring season of 2020/2021 under controlled conditions, eliminating the adverse impact of external factors. The results revealed that none of the preparations were effective in increasing Ca content, preventing BER, and did not promote the tomato yield. As good agricultural practices were followed in the greenhouse to manage BER, we concluded that a non-marketable yield of around 15% should be expected for ‘Beorange’ when grown under artificial light, possibly due to the impact of abiotic stresses and genetically determined susceptibility.

Funder

European Agricultural Fund for Rural Development

Ministry of Education and Science of the Latvia for the University of Latvia

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference46 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3