BrCYP71A15 Negatively Regulates Hg Stress Tolerance by Modulating Cell Wall Biosynthesis in Yeast

Author:

Anwar Ali1ORCID,Zhang Shu1,Wang Lixia1,He Lilong1,Gao Jianwei1ORCID

Affiliation:

1. Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China

Abstract

Over the past two decades, heavy metal pollution has been a common problem worldwide, greatly threatening crop production. As one of the metal pollutants, Mercury (Hg) causes damage to plant cells and reduces cellular and biochemical activities. In this study, we identified a novel cytochrome P450 family gene, BrCYP71A15, which was involved in Hg stress response in yeast. In Chinese cabbage, the BrCYP71A15 gene was located on chromosome A01, which was highly expressed in roots. Additionally, the expression level of BrCYP71A15 was induced by different heavy metal stresses, and the BrCYP71A15 protein exhibited a strong interaction with other proteins. Overexpression of BrCYP71A15 in yeast cells showed no response to a number of heavy metal stresses (Cu, Al, Co, Cd) in yeast but showed high sensitivity to Hg stress; the cells grew slower than those carrying the empty vector (EV). Moreover, upon Hg stress, the growth of the BrCYP71A15-overexpressing cells increased over time, and Hg accumulation in yeast cells was enhanced by two-fold compared with the control. Additionally, BrCYP71A15 was translocated into the nucleus under Hg stress. The expression level of cell wall biosynthesis genes was significantly influenced by Hg stress in the BrCYP71A15-overexpressing cells. These findings suggested that BrCYP71A15 might participate in HG stress tolerance. Our results provide a fundamental basis for further genome editing research and a novel approach to decrease Hg accumulation in vegetable crops and reduce environmental risks to human health through the food chain.

Funder

Natural Science Foundation of Shandong Province

Technology projects of the China Huaneng Group Co., Ltd.

National Natural Science Foundation, China

Projects of 20 Rules for New Universities in Jinan, China

Modern Agricultural Industrial Technology System Funding of Shandong Province, China

China Agriculture Research System

Agricultural Science and Technology Innovation Project of SAAS

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3