Prediction of the Potential Distribution of the Endangered Species Meconopsis punicea Maxim under Future Climate Change Based on Four Species Distribution Models

Author:

Zhang Hao-Tian1,Wang Wen-Ting1

Affiliation:

1. School of Mathematics and Computer Science, Northwest Minzu University, Lanzhou 730030, China

Abstract

Climate change increases the extinction risk of species, and studying the impact of climate change on endangered species is of great significance to biodiversity conservation. In this study, the endangered plant Meconopsis punicea Maxim (M. punicea) was selected as the research object. Four species distribution models (SDMs): the generalized linear model, the generalized boosted regression tree model, random forest and flexible discriminant analysis were applied to predict the potential distribution of M. punicea under current and future climates scenarios. Among them, two emission scenarios of sharing socio-economic pathways (SSPs; i.e., SSP2-4.5 and SSP5-8.5) and two global circulation models (GCMs) were considered for future climate conditions. Our results showed that temperature seasonality, mean temperature of coldest quarter, precipitation seasonality and precipitation of warmest quarter were the most important factors shaping the potential distribution of M. punicea. The prediction of the four SDMs consistently indicated that the current potential distribution area of M. punicea is concentrated between 29.02° N–39.06° N and 91.40° E–105.89° E. Under future climate change, the potential distribution of M. punicea will expand from the southeast to the northwest, and the expansion area under SSP5-8.5 would be wider than that under SSP2-4.5. In addition, there were significant differences in the potential distribution of M. punicea predicted by different SDMs, with slight differences caused by GCMs and emission scenarios. Our study suggests using agreement results from different SDMs as the basis for developing conservation strategies to improve reliability.

Funder

the National Natural Science Foundation of China

the Natural Science Foundation of Gansu Province

the Scientific Research Project for Colleges and Universities of Gansu Province

the Research Fund for Humanities and Social Sciences of the Ministry of Education

the Foundation Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3