Effects of Tea Plant Varieties with High- and Low-Nutrient Efficiency on Nutrients in Degraded Soil

Author:

Ruan Li1,Li Xin23,Song Yuhang2,Li Jianwu12,Palansooriya Kumuduni Niroshika4

Affiliation:

1. Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China

2. Institute of Carbon Neutrality, Zhejiang A&F University, Hangzhou 311300, China

3. Agricultural Technology Extension Station of Tangshan Agricultural and Rural Bureau, Tangshang 063000, China

4. State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China

Abstract

Tea plants are widely planted in tropical and subtropical regions globally, especially in southern China. The high leaching and strong soil acidity in these areas, in addition to human factors (e.g., tea picking and inappropriate fertilization methods) aggravate the lack of nutrients in tea garden soil. Therefore, improving degraded tea-growing soil is urgently required. Although the influence of biological factors (e.g., tea plant variety) on soil nutrients has been explored in the existing literature, there are few studies on the inhibition of soil nutrient degradation using different tea plant varieties. In this study, two tea plant varieties with different nutrient efficiencies (high-nutrient-efficiency variety: Longjing43 (LJ43); low-nutrient-efficiency variety: Liyou002 (LY002)) were studied. Under a one-side fertilization mode of two rows and two plants, the tea plant growth status, soil pH, and available nutrients in the soil profiles were analyzed, aiming to reveal the improvement of degraded soil using different tea varieties. The results showed that (1) differences in the phenotypic features of growth (such as dry tea yield, chlorophyll, leaf nitrogen (N), phosphorus (P), and potassium (K) content) between the fertilization belts in LJ43 (LJ43-near and LJ43-far) were lower than those in LY002. (2) RDA results showed that the crucial soil nutrient factors which determine the features of tea plants included available P, slowly available K, and available K. Moreover, acidification was more serious near the fertilization belt. The pH of the soil near LJ43 was higher than that near LY002, indicating an improvement in soil acidification. (3) Soil nutrient heterogeneity between fertilization belts in LJ43 (LJ43-near and LJ43-far) was lower than in LY002. In conclusion, the long-term one-side fertilization mode of two rows and two plants usually causes spatial heterogeneities in soil nutrients and aggravates soil acidification. However, LJ43 can reduce the nutrient heterogeneities and soil acidification, which is probably due to the preferential development of secondary roots. These results are helpful in understanding the influence of tea plant variety on improving soil nutrients and provide a relevant scientific reference for breeding high-quality tea varieties, improving the state of degraded soil and maintaining soil health.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang province

Zhejiang Academy of Agricultural Sciences

Discipline construction funds of Zhejiang Academy of Agricultural Sciences

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3