Nitrogen Application Can Be Reduced without Affecting Carotenoid Content, Maturation, Shelf Life and Yield of Greenhouse Tomatoes

Author:

Chormova Dimitra1,Kavvadias Victor2,Okello Edward1ORCID,Shiel Robert1,Brandt Kirsten3ORCID

Affiliation:

1. School of Agriculture, Food and Rural Development, Newcastle University, Agriculture Building, Newcastle upon Tyne NE1 7RU, UK

2. Department of Soil Science of Athens, Institute of Soil and Water Resources, Hellenic Agricultural Organization DIMITRA, 1 Sofokli Venizelou Str., Lykovrysi-Athens, 14123 Attiki, Greece

3. Population Health Sciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK

Abstract

Tomatoes (Solanum lycopersicum L.) of the variety Elpida were grown under standard Mediterranean greenhouse conditions during the spring season at three different nitrogen levels (low 6.4, standard 12.8, high 25.9 mM/plant), which were replicated during two consecutive years. Application of high nitrogen significantly increased the colour index a* (p < 0.001) but did not significantly affect yield or quality. The variety exhibited prolonged postharvest storage at room temperature (median survival time of 93 days). The maturation process was delayed by harvest at the breaker stage (2.5 days, p ≤ 0.001) or by super-optimal temperatures in the second year of experimentation (10 days, p ≤ 0.001). The colour indices L* and a* and the hue angle (a/b*) were positively correlated with the sum of total carotenoids, while differences in b* depended on the year of cultivation. The sustainability of this type of tomato production can be improved by reducing the nitrogen supply to less than the current standard practice, with minimal risk or negative effects on yield and quality of tomatoes.

Funder

Greek State Scholarship Foundation

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3