Identification and Characterization of Beneficial Soil Microbial Strains for the Formulation of Biofertilizers Based on Native Plant Growth-Promoting Microorganisms Isolated from Northern Mexico

Author:

Guardiola-Márquez Carlos Esteban1ORCID,Santos-Ramírez María Teresa1,Figueroa-Montes Melina Lizeth1,Valencia-de los Cobos Eric Oswaldo1,Stamatis-Félix Iván Jesús1,Navarro-López Diego E.1ORCID,Jacobo-Velázquez Daniel A.12ORCID

Affiliation:

1. Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. General Ramon Corona 2514, Zapopan 45138, Jalisco, Mexico

2. Tecnologico de Monterrey, Institute for Obesity Research, Av. General Ramon Corona 2514, Zapopan 45201, Jalisco, Mexico

Abstract

Plant growth-promoting microorganisms (PGPM) benefit plant health by enhancing plant nutrient-use efficiency and protecting plants against biotic and abiotic stresses. This study aimed to isolate and characterize autochthonous PGPM from important agri-food crops and nonagricultural plants to formulate biofertilizers. Native microorganisms were isolated and evaluated for PGP traits (K, P, and Zn solubilization, N2-fixation, NH3-, IAA and siderophore production, and antifungal activity against Fusarium oxysporum). Isolates were tested on radish and broccoli seedlings, evaluating 19 individual isolates and 12 microbial consortia. Potential bacteria were identified through DNA sequencing. In total, 798 bacteria and 209 fungi were isolated. Isolates showed higher mineral solubilization activity than other mechanisms; 399 bacteria and 156 fungi presented mineral solubilization. Bacteria were relevant for nitrogen fixation, siderophore, IAA (29–176 mg/L), and ammonia production, while fungi for Fusarium growth inhibition (40–69%). Twenty-four bacteria and eighteen fungi were selected for their PGP traits. Bacteria had significantly (ANOVA, p < 0.05) better effects on plants than fungi; treatments improved plant height (23.06–51.32%), leaf diameter (25.43–82.91%), and fresh weight (54.18–85.45%) in both crops. Most potential species belonged to Pseudomonas, Pantoea, Serratia, and Rahnella genera. This work validated a high-throughput approach to screening hundreds of rhizospheric microorganisms with PGP potential isolated from rhizospheric samples.

Funder

Tecnologico de Monterrey, Institute for Obesity Research

Consejo Nacional de Ciencia y Tecnología (CONACYT) from Mexico

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3