Development and Evaluation of Zinc and Iron Nanoparticles Functionalized with Plant Growth-Promoting Rhizobacteria (PGPR) and Microalgae for Their Application as Bio-Nanofertilizers

Author:

Guardiola-Márquez Carlos Esteban1ORCID,López-Mena Edgar R.1ORCID,Segura-Jiménez M. Eugenia1ORCID,Gutierrez-Marmolejo Isaac2ORCID,Flores-Matzumiya Manuel A.1,Mora-Godínez Shirley23ORCID,Hernández-Brenes Carmen23ORCID,Jacobo-Velázquez Daniel A.13ORCID

Affiliation:

1. Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Guadalajara, Ave. General Ramon Corona 2514, Zapopan 45138, Mexico

2. Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico

3. Tecnologico de Monterrey, Institute for Obesity Research, Ave. General Ramon Corona 2514, Zapopan 45201, Mexico

Abstract

Micronutrient deficiencies are widespread and growing global concerns. Nanoscale nutrients present higher absorption rates and improved nutrient availability and nutrient use efficiency. Co-application of nanofertilizers (NFs) with biological agents or organic compounds increases NF biocompatibility, stability, and efficacy. This study aimed to develop and evaluate zinc and iron bio-nanofertilizers formulated with plant growth-promoting rhizobacteria (PGPR) and microalgae. Nanoparticles (NPs) were synthesized with the co-precipitation method and functionalized with Pseudomonas species and Spirulina platensis preparation. NPs were characterized and evaluated on seed germination, soil microbial growth, and early plant response under seedbed conditions. NPs corresponded to zinc oxide (ZnO; 77 nm) and maghemite (γ-Fe2O3; 68 nm). Functionalized nanoparticles showed larger sizes, around 145–233 nm. The seedling vigor index of tomato and maize was significantly increased (32.9–46.1%) by bacteria-functionalized ZnO- and γ-Fe2O3-NPs at 75 ppm. NFs at 250 and 75 ppm significantly increased bacterial growth. NFs also improved early plant growth by increasing plant height (14–44%), leaf diameter (22–47%), and fresh weight (46–119%) in broccoli and radish, which were mainly influenced by bacteria capped ZnO- and γ-Fe2O3-NPs at 250 ppm. Beneficial effects on plant growth can be attributed to the synergistic interaction of the biological components and the zinc and iron NPs in the bio-nanofertilizers.

Funder

Tecnologico de Monterrey Institute for Obesity Research

Consejo Nacional de Ciencia y Tecnología (CONACYT) from Mexico

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3