Exploring the Impact of Salicylic Acid and Farmyard Manure on Soil Rhizospheric Properties and Cadmium Stress Alleviation in Maize (Zea mays L.)

Author:

Ali Hafiz1ORCID,Shehzadi Nimra2,Zaheer Muhammad3ORCID,Seleiman Mahmoud4ORCID,Aldhuwaib Khalid5,Din Khan Waqas1ORCID,Raza Ali6

Affiliation:

1. Department of Agriculture, Government College University, Lahore 54000, Pakistan

2. Sustainable Development Study Center (SDSC), Government College University, Lahore 54000, Pakistan

3. Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan

4. Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia

5. School of Biological Sciences, University of Reading, Reading RG6 6EX, UK

6. Department of Agronomy, University of Sargodha, Sargodha 40100, Pakistan

Abstract

Cadmium (Cd) pollution is a growing environmental problem that negatively impacts plant growth and development, particularly in maize. In this research, the impact of farmyard manure (FYM) and salicylic acid (SA) on rhizospheric characteristics and the reduction of Cd stress in maize was examined at Government College (GC) University, Lahore, in 2022. The experiment was arranged with a randomized design, including three replications of 12 treatments (T1 = Control; T2 = Farmyard manure; T3 = Salicylic Acid; T4 = 100 mg/kg of soil Cd; T5 = 200 mg/kg of soil Cd; T6 = Farmyard manure + Salicylic acid; T7 = FYM + 100 mg/kg soil Cd; T8 = FYM + 200 mg/kg soil Cd; T9 = SA + 100 mg/kg soil Cd; T10 = SA + 200 mg/kg soil Cd; T11 = FYM + SA + 100 mg/kg soil Cd; T12 = FYM + SA + 200 mg/kg soil Cd). Results demonstrated that Cd stress negatively affected the maize plant and soil properties, but the application of SA and FYM was effective to mitigate the Cd stress up to a certain level. A reduction of 41.52%, 39.14%, and 39.94% in root length, length of the leaf, and crop growth rate was noticed, due to the Cd stress at 200 mg/kg soil, but this reduction was reduced to 18.83%, 10.35%, and 12.26%, respectively, when FYM and salicylic acid were applied as a combined application under the same stress level of Cd. The root biomass, leaf surface area, and length were all improved by SA and FYM, which enhanced the plant’s capacity to absorb nutrients and improve growth under Cd stress. In conclusion, the use of salicylic acid together with farm manure can be an effective approach to mitigate Cd stress in maize crops.

Funder

King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3