Author:
KHAN Imran,SELEIMAN Mahmoud F.,CHATTHA Muhammad U.,JALAL Rewaa S.,MAHMOOD Faisal,HASSAN Fahmy A. S.,IZZET Warda,ALHAMMAD Bushra A.,ALI Esmat F.,ROY Rana,USLU Omer S.,HASSAN Muhammad U.
Abstract
Cadmium (Cd) accumulation is an emerging environmental hazard and has detrimental effects on plant growth and development. Salicylic acid (SA) is a well-known plant growth regulator that can initiate various molecular pathways to ameliorate Cd toxicity. The experiment was executed to scrutinize the mediatory role of SA to accelerate the defensive mechanism of mung bean in response to Cd stress. Mung bean plants were exposed to 0, 5, 10 and 15 mg Cd kg-1 of soil. Exogenous application of SA 0, 10-6 and 10-3 M was added prior flowering. Results exhibited that Cd stress considerably reduced the growth-related attributes i.e. shoot length, root length, fresh and dry biomass, total soluble protein, total amino acids, relative water contents and photosynthetic pigments. Cadmium stress showed a significant increase in antioxidants levels such as peroxidase (POD), ascorbate peroxidase (APX), ascorbic acid (AsA), and catalase (CAT) and promoted the accumulation of hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents. However, exogenously applied SA significantly improved plant biomass and photosynthetic pigments under Cd stress. Moreover, SA improved the defensive system by enhancing antioxidants’ activities under the increasing concentration of Cd stress. Furthermore, SA reduced the Cd uptake, membrane damage and, H2O2 and MDA accumulation. The study's findings concluded that exogenous-applied SA enhanced plant growth, promoted the antioxidant activities, and reduced the oxidative damage in mung bean seedlings under Cd stress.
Publisher
University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca
Subject
Horticulture,Plant Science,Agronomy and Crop Science
Reference64 articles.
1. Abbas MS, Akmal M, Ullah S, Hassan MU, Farooq S (2017). Effectiveness of zinc and gypsum application against cadmium toxicity and accumulation in wheat (Triticum aestivum L.). Communications in Soil Science and Plant Analysis 48:1659-1668. https://doi.org/10.1080/00103624.2017.1373798
2. Acar O, Türkan I, Özdemir F (2001). Superoxide dismutase and peroxidase activities in drought sensitive and resistant barley (Hordeum vulgare L.) varieties. Acta Physiologiae Plantarum 23:351-356. https://link.springer.com/article/10.1007/s11738-001-0043-8
3. Akhtar J, Ahmad R, Ashraf MY, Tanveer A, Waraich EA, Oraby H (2013). Influence of exogenous application of salicylic acid on salt-stressed mungbean (Vigna radiata): growth and nitrogen metabolism. Pakistan Journal of Botany 45:119-125. https://www.pakbs.org/pjbot/PDFs/45(1)/15.pdf
4. Aamir M, Hassan MU, Li Z, A Ali, Su Q, Liu L, … Guaqin H (2018). Foliar application of glycinebetaine alleviates the cadmium toxicity in spinach through reducing Cd uptake and improving the activity of anti-oxidant system. Applied Ecology and Environmental Research 16(6):7575-7583. http://dx.doi.org/10.15666/aeer/1606_75757583
5. Al-Ashkar I, Alderfasi A, Ben Romdhane W, Seleiman MF, El-Said RA, Al-Doss A (2020). Morphological and genetic diversity within salt tolerance detection in eighteen wheat genotypes. Plants 9:287. https://doi.org/10.3390/plants9030287
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献