Genome-Wide Identification of 2-Oxoglutarate and Fe (II)-Dependent Dioxygenase (2ODD-C) Family Genes and Expression Profiles under Different Abiotic Stresses in Camellia sinensis (L.)

Author:

Han Jingxue1,Wang Xiaojing1,Niu Suzhen1

Affiliation:

1. College of Tea Science, Guizhou University, Guiyang 550025, China

Abstract

The 2-oxoglutarate and Fe (II)-dependent dioxygenase (2ODD-C) family of 2-oxoglutarate-dependent dioxygenases potentially participates in the biosynthesis of various metabolites under various abiotic stresses. However, there is scarce information on the expression profiles and roles of 2ODD-C genes in Camellia sinensis. We identified 153 Cs2ODD-C genes from C. sinensis, and they were distributed unevenly on 15 chromosomes. According to the phylogenetic tree topology, these genes were divided into 21 groups distinguished by conserved motifs and an intron/exon structure. Gene-duplication analyses revealed that 75 Cs2ODD-C genes were expanded and retained after WGD/segmental and tandem duplications. The expression profiles of Cs2ODD-C genes were explored under methyl jasmonate (MeJA), polyethylene glycol (PEG), and salt (NaCl) stress treatments. The expression analysis showed that 14, 13, and 49 Cs2ODD-C genes displayed the same expression pattern under MeJA and PEG treatments, MeJA and NaCl treatments, and PEG and NaCl treatments, respectively. A further analysis showed that two genes, Cs2ODD-C36 and Cs2ODD-C21, were significantly upregulated and downregulated after MeJA, PEG, and NaCl treatments, indicating that these two genes played positive and negative roles in enhancing the multi-stress tolerance. These results provide candidate genes for the use of genetic engineering technology to modify plants by enhancing multi-stress tolerance to promote phytoremediation efficiency.

Funder

National Natural Science Foundation of China

Chinese Academy of the Sciences

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3