Affiliation:
1. Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
2. College of Life Science, Shandong Normal University, Jinan 250014, China
Abstract
Ammonium (NH4+) toxicity is ubiquitous in plants. To investigate the underlying mechanisms of this toxicity and bicarbonate (HCO3−)-dependent alleviation, wheat plants were hydroponically cultivated in half-strength Hoagland nutrient solution containing 7.5 mM NO3− (CK), 7.5 mM NH4+ (SA), or 7.5 mM NH4+ + 3 mM HCO3− (AC). Transcriptomic analysis revealed that compared to CK, SA treatment at 48 h significantly upregulated the expression of genes encoding fermentation enzymes (pyruvate decarboxylase (PDC), alcohol dehydrogenase (ADH), and lactate dehydrogenase (LDH)) and oxygen consumption enzymes (respiratory burst oxidase homologs, dioxygenases, and alternative oxidases), downregulated the expression of genes encoding oxygen transporters (PIP-type aquaporins, non-symbiotic hemoglobins), and those involved in energy metabolism, including tricarboxylic acid (TCA) cycle enzymes and ATP synthases, but upregulated the glycolytic enzymes in the roots and downregulated the expression of genes involved in the cell cycle and elongation. The physiological assay showed that SA treatment significantly increased PDC, ADH, and LDH activity by 36.69%, 43.66%, and 61.60%, respectively; root ethanol concentration by 62.95%; and lactate efflux by 23.20%, and significantly decreased the concentrations of pyruvate and most TCA cycle intermediates, the complex V activity, ATP content, and ATP/ADP ratio. As a consequence, SA significantly inhibited root growth. AC treatment reversed the changes caused by SA and alleviated the inhibition of root growth. In conclusion, NH4+ treatment alone may cause hypoxic stress in the roots, inhibit energy generation, suppress cell division and elongation, and ultimately inhibit root growth, and adding HCO3− remarkably alleviates the NH4+-induced inhibitory effects on root growth largely by attenuating the hypoxic stress.
Funder
Natural Science Foundation of Shandong Province
National Key Research and Development Program of China
Shandong Modern Agricultural Technology and Industry System
Reference99 articles.
1. Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions;Fernie;Mol. Plant,2010
2. An overview about the impacts of agricultural practices on grape nitrogen composition: Current research approaches;Food Res. Int.,2020
3. Calatrava, V., Tejada-Jimenez, M., Sanz-Luque, E., Fernandez, E., and Galvan, A. (2023). The Chlamydomonas Sourcebook, Academic Press.
4. Isotopic labelling reveals the efficient adaptation of wheat root TCA cycle flux modes to match carbon demand under ammonium nutrition;Cukier;Sci. Rep.,2019
5. Glutamate over-accumulation may serve as an endogenous indicator of tricarboxylic acid (TCA) cycle suppression under NH4+ nutrition in wheat (Triticum aestivum L.) seedlings;Wang;Environ. Exp. Bot.,2020
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献