Transcriptomic and Physiological Analyses Reveal the Molecular Mechanism through Which Exogenous Melatonin Increases Drought Stress Tolerance in Chrysanthemum

Author:

Luo Yan1,Hu Taotao1,Huo Yunyun1,Wang Lingling1,Zhang Li1,Yan Rui12

Affiliation:

1. School of Agriculture, Ningxia University, Yinchuan 750021, China

2. Ningxia Modern Facility Horticulture Engineering Technology Research Center, Yinchuan 750021, China

Abstract

Chrysanthemum (Chrysanthemum morifolium (Ramat.) Hemsl.) is an important species in China’s flower industry, and drought stress seriously affects the growth, quality, yield, and geographical distribution of this species. Melatonin (MT) plays a key role in regulating plant abiotic stress responses and stress resistance, but the mechanism through which exogenous MT regulates drought resistance in chrysanthemum remains unclear. This study explored the protective effect of MT on chrysanthemum drought tolerance and its key regulatory pathways. Exogenous MT application increased the photosynthetic capacity (Tr increased by 18.07%; Pn increased by 38.46%; and Gs increased by 26.52%) of chrysanthemum and attenuated decreases in its chlorophyll (19.89%) and relative water contents (26.94%). Moreover, MT increased the levels of osmolarity-related compounds such as soluble sugars (43.60%) and soluble protein (9.86%) under drought stress and increased antioxidant enzyme activity (SOD increased by 20.98%; POD increased by 35.04%; and CAT increased by 26.21%). Additionally, MT increased the endogenous MT (597.96%), growth hormone (45.31% and 92.09%), gibberellic acid (75.92% and 3.79%), salicylic acid (33.02%), and cytokinin contents (1400.00%) under drought stress while decreasing the abscisic acid (50.69% and 56.79%), jasmonate contents (62.57% and 28.31%), and ethylene contents (9.28%). RNA-seq analysis revealed 17,389, 1466, and 9359 differentially expressed genes (DEGs) under three treatments (PEG, MT, and MT _ PEG, respectively) compared with the control. Enrichment analyses of the DEGs identified more than 10 GO terms and 34 KEGG pathways. Nitrogen metabolism, sulfur metabolism, and alanine, aspartate, and glutamate metabolism were significantly increased under all three treatments. The DEGs included many transcription factors, such as MYB, WRKY, and NAC proteins. Our results preliminarily classify candidate genes and metabolic pathways with active roles in the interaction between MT and drought stress and advance the understanding of the molecular mechanism of the response to drought stress under MT conditions, thereby providing a theoretical basis for the breeding of drought-resistant chrysanthemum.

Funder

Ningxia Hui Autonomous Region Key Research and Development

Ningxia Hui Autonomous Region Key Research and Development Program

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3