Genome and Transcriptome Identification of a Rice Germplasm with High Cadmium Uptake and Translocation

Author:

Luo Jin-Song12,Guo Bao12,He Yiqi12,Chen Chun-Zhu3,Yang Yong12,Zhang Zhenhua12ORCID

Affiliation:

1. College of Resources, Hunan Agricultural University, Changsha 410128, China

2. Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Provincial Key Laboratory of Nutrition in Common University, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Changsha 410128, China

3. 3D Medicines, Block A, Building 2, No.158 Xinjunhuan Road, Pujiang Town, Minhang District, Shanghai 201210, China

Abstract

The safe production of food on Cd-polluted land is an urgent problem to be solved in South China. Phytoremediation or cultivation of rice varieties with low Cd are the main strategies to solve this problem. Therefore, it is very important to clarify the regulatory mechanism of Cd accumulation in rice. Here, we identified a rice variety with an unknown genetic background, YSD, with high Cd accumulation in its roots and shoots. The Cd content in the grains and stalks were 4.1 and 2.8 times that of a commonly used japonica rice variety, ZH11, respectively. The Cd accumulation in the shoots and roots of YSD at the seedling stage was higher than that of ZH11, depending on sampling time, and the long-distance transport of Cd in the xylem sap was high. Subcellular component analysis showed that the shoots, the cell wall, organelles, and soluble fractions of YSD, showed higher Cd accumulation than ZH11, while in the roots, only the cell wall pectin showed higher Cd accumulation. Genome-wide resequencing revealed mutations in 22 genes involved in cell wall modification, synthesis, and metabolic pathways. Transcriptome analysis in Cd-treated plants showed that the expression of pectin methylesterase genes was up-regulated and the expression of pectin methylesterase inhibitor genes was down-regulated in YSD roots, but there were no significant changes in the genes related to Cd uptake, translocation, or vacuole sequestration. The yield and tiller number per plant did not differ significantly between YSD and ZH11, but the dry weight and plant height of YSD were significantly higher than that of ZH11. YSD provides an excellent germplasm for the exploration of Cd accumulation genes, and the cell wall modification genes with sequence- and expression-level variations provide potential targets for phytoremediation.

Funder

National Natural Science Foundation of Hunan Province

National Natural Science Foundation of China

National Key Research and Development Program of China

China Agriculture Research System Project

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3