Xanthomonas euvesicatoria-Specific Bacteriophage BsXeu269p/3 Reduces the Spread of Bacterial Spot Disease in Pepper Plants

Author:

Shopova Elena1ORCID,Brankova Liliana1ORCID,Ivanov Sergei23,Urshev Zoltan4,Dimitrova Lyudmila1,Dimitrova Melani3,Hristova Petya3ORCID,Kizheva Yoana3ORCID

Affiliation:

1. Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21., 1113 Sofia, Bulgaria

2. Centre of Food Biology, 1592 Sofia, Bulgaria

3. Faculty of Biology, Sofia University St. “Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria

4. R&D Center, LB Bulgaricum PLC, 14 Malashevska Str., 1225 Sofia, Bulgaria

Abstract

The present study was focused on the pathosystem pepper plants (Capsicum annuum L.)-phytopathogenic bacterium X. euvesicatoria (wild strain 269p)-bacteriophage BsXeu269p/3 and the possibility of bacteriophage-mediated biocontrol of the disease. Two new model systems were designed for the monitoring of the effect of the phage treatment on the infectious process in vivo. The spread of the bacteriophage and the pathogen was monitored by qPCR. A new pair of primers for phage detection via qPCR was designed, as well as probes for TaqMan qPCR. The epiphytic bacterial population and the potential bacteriolytic effect of BsXeu269p/3 in vivo was observed by SEM. An aerosol-mediated transmission model system demonstrated that treatment with BsXeu269p/3 reduced the amount of X. euvesicatoria on the leaf surface five-fold. The needle-pricking model system showed a significant reduction of the amount of the pathogen in infectious lesions treated with BsXeu269p/3 (av. 59.7%), compared to the untreated control. We found that the phage titer is 10-fold higher in the infection lesions but it was still discoverable even in the absence of the specific host in the leaves. This is the first report of in vivo assessment of the biocontrol potential of locally isolated phages against BS pathogen X. euvesicatoria in Bulgaria.

Funder

Bulgarian National Science Fund

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3