Effects of Sugarcane Leaf Return and Fertilizer Reduction on Maize Growth, Yield and Soil Properties in Red Soil

Author:

Liu Yufeng1,Tan Yumo1,Liang Dan2,Pei Chengruo2,Zhang Zhenhua34

Affiliation:

1. Agricultural Resources and Environmental Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Arable Land Conservation, Nanning 530007, China

2. Guangxi Vocational College of Water Resources and Electric Power, Nanning 530023, China

3. Institute of Jiangsu Coastal Agricultural Sciences, Yancheng 224002, China

4. School of Agriculture and Environment, The University of Western Australia, Crawley, WA 6009, Australia

Abstract

In order to make better use of the vast sugarcane leaf straw resources and reduce the overuse of chemical fertilizers in the subtropical red soil region of Guangxi, this study aimed to determine the effects of sugarcane leaf return (SLR) and fertilizer reduction (FR) on maize growth, yield component and yield, and soil properties. A pot experiment with three SLR amounts (full SLR (FS), 120 g/pot; half SLR (HS), 60 g/pot; and no SLR (NS) with three FR levels including full fertilizer (FF), 4.50 g N/pot, 3.00 g P2O5/pot, and 4.50 g K2O/pot; half fertilizer (HF), 2.25 g N/pot, 1.50 g P2O5/pot, and 2.25 g K2O/pot; and no fertilizer (NF)), without nitrogen, phosphorous, and potassium added, was conducted to assess the effects of different SLR amounts and chemical FR levels on maize growth, yield, and soil properties. Compared with no sugarcane leaf return and the no-fertilizer treatment (CK), SLR and FR could increase maize plant height, stalk diameter, number of fully developed maize plant leaves, total leaf area and chlorophyll content, soil alkali–hydrolyzable nitrogen (AN), available phosphorus (AP), available potassium (AK), soil organic matter (SOM), and electrical conductivity (EC). The maize yield component factors of FS and HS were higher in NF treatment than those in NS treatment. The relative increase rate of treatments retained FF/NF and HF/NF under FS or HS condition on 1000 kernel weight, ear diameter, plant air-dried weight, ear height, and yield than that under NS condition. FSHF had not only the largest plant air-dried weight but also the highest maize yield (3225.08 kg/hm2) among nine treatment combinations. The effects of SLR on maize growth and yield and soil properties were lower than those of FR. SLR and FR combined treatment did not affect maize growth but affected maize yield significantly. Soil properties improved more with SLR + FR treatment than with SLR or FR application alone. The plant height, stalk diameter, number of fully developed maize plant leaves, and total leaf area, as well as AN, AP, AK, SOM, and EC levels in soil, were enhanced by SLR and FR incorporation. The experimental results indicated that applying reasonable FR combined with SLR increased AN, AP, AK, SOM, and EC, which improved maize growth and yield and enhanced soil properties in red soil. Hence, FSHF might be a suitable combination of SLR and FR.

Funder

the Natural Science Foundation of Guangxi

the Scientific Base and Talents Foundation of Guangxi

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference74 articles.

1. Effects of Seaweed Extracts on the Growth, Physiological Activity, Cane Yield and Sucrose Content of Sugarcane in China;Chen;Front. Plant Sci.,2021

2. Discussion on Mechanization Technology of Sugarcane Production in Guangxi;Liu;Int. J. Manag. Educ. Hum. Dev.,2022

3. Comparative Analysis of Sugar Production Cost in Guangxi and World Major Producing Countries;Chen;Asian Agric. Res.,2021

4. Several sugarcane cultivars residues quantity and nutrient content of the residue;Zhong;Soil Fertil.,2009

5. Research Progress of Sugarcane Leaves;Li;Food Ind.,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3