Diagnosis and Mobile Application of Apple Leaf Disease Degree Based on a Small-Sample Dataset

Author:

Li Lili1ORCID,Wang Bin1ORCID,Li Yanwen1,Yang Hua1

Affiliation:

1. College of Information Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China

Abstract

The accurate segmentation of apple leaf disease spots is the key to identifying the classification of apple leaf diseases and disease severity. Therefore, a DeepLabV3+ semantic segmentation network model with an actors spatial pyramid pool module (ASPP) was proposed to achieve effective extraction of apple leaf lesion features and to improve the apple leaf disease recognition and disease severity diagnosis compared with the classical semantic segmentation network models PSPNet and GCNet. In addition, the effects of the learning rate, optimizer, and backbone network on the performance of the DeepLabV3+ network model with the best performance were analyzed. The experimental results show that the mean pixel accuracy (MPA) and mean intersection over union (MIoU) of the model reached 97.26% and 83.85%, respectively. After being deployed into the smartphone platform, the detection time of the detection system was 9s per image for the portable and intelligent diagnostics of apple leaf diseases. The transfer learning method provided the possibility of quickly acquiring a high-performance model under the condition of small datasets. The research results can provide a precise guide for the prevention and precise control of apple diseases in fields.

Funder

Basic Research Project of Shanxi Province

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring Dataset for Apple Leaf Disease Detection;Smart Agritech;2024-09-13

2. Smart agriculture: An intelligent approach for apple leaf disease identification based on convolutional neural network;Journal of Phytopathology;2024-07

3. Deep Learning-Based Web Application for Real-Time Apple Leaf Disease Detection and Classification;2024 International Conference on Advancements in Smart, Secure and Intelligent Computing (ASSIC);2024-01-27

4. Apple Leaf Disease Diagnosis Based on Knowledge Distillation and Attention Mechanism;IEEE Access;2024

5. Severity Levels of Apple Disease Recognition Using CNN and Random Forest: An Integrated Approach;2023 3rd International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON);2023-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3