Smart agriculture: An intelligent approach for apple leaf disease identification based on convolutional neural network

Author:

Ni Jiangong1ORCID

Affiliation:

1. School of Electronics and Information Engineering Hangzhou Dianzi University Hangzhou China

Abstract

AbstractPlant diseases pose a significant threat to global agricultural productivity and food safety. Early detection and accurate identification of these diseases are essential for effective disease management strategies. Traditional plant disease identification mainly relies on manual observation and experienced expert judgement, which has the disadvantages of being time‐consuming, labour‐intensive and low efficiency. Given the above problems, this study proposes a method for identifying apple leaf diseases based on a convolutional neural network combining hybrid attention and bidirectional long short‐term memory (BiLSTM). Appropriate apple leaf disease samples were selected from multiple public data sets to form an experimental data set. Then, the data set is imported into the improved convolutional neural network for training. Based on the original ResNet18 model, a new convolutional neural network, AppleNet, is constructed by adding a hybrid attention module and modifying the classifier structure. The experimental results show that the average recognition accuracy of AppleNet is 94.66%, which is 2.47% higher than that of the ResNet18 network. In addition, the training time of the model is only slightly increased. The ablation experiment further verified the effectiveness of the model modification. Compared with other advanced models in recognition accuracy and model training time, the superiority of AppleNet is confirmed. This study verifies that deep learning has great potential and application prospects in plant disease identification and provides a new technical solution for intelligent and convenient plant disease identification.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3