Enhancement of the CRISPR/Cas9-Based Genome Editing System in Lettuce (Lactuca sativa L.) Using the Endogenous U6 Promoter

Author:

Riu Young-Sun1,Kim Gwang Hoon12,Chung Ki Wha12ORCID,Kong Sam-Geun12ORCID

Affiliation:

1. Department of Biological Sciences, Kongju National University, Gongju-si 32588, Republic of Korea

2. Biotechnology Research Institute, Kongju National University, Gongju-si 32588, Republic of Korea

Abstract

The CRISPR/Cas9 system has been widely applied as a precise gene-editing tool for studying gene functions as well as improving agricultural traits in various crop plants. Here, we optimized a gene-editing system in lettuce (Lactuca sativa L.) using the endogenous U6 promoter and proved that the PHOT2 gene is a versatile target gene. We isolated the LsU6-10 promoter from 10 U6 snRNA genes identified from the lettuce genome database for comparison with the AtU6-26 promoter that has been used to drive sgRNAs in lettuce. Two CRISPR/Cas9 vectors were constructed using the LsU6-10 and AtU6-26 promoters to drive sgRNA361 to target the PHOT2 gene. The chloroplast avoidance response was defective in lettuces with biallelic mutations in the targeted PHOT2 gene, as in the Arabidopsis phot2 mutant. The PHOT2 gene mutations were stably heritable from the R0 to R2 generations, and the high gene-editing efficiency enabled the selection of transgene-free lines in the R1 generation and the establishment of independent phot2 mutants in the R2 generation. Our results suggest that the LsU6-10 promoter is more effective than the AtU6-26 promoter in driving sgRNA for the CRISPR/Cas9 system in lettuce and that PHOT2 is a useful target gene to verify gene editing efficiency without any detrimental effects on plant growth, which is often a consideration in conventional target genes.

Funder

Ministry of Education

National Marine Biodiversity Institute of Korea

Kongju National University

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3