CRISPR-Cas9 mediated deletions ofFvMYB46reduces fruit set and biosynthesis of flavonoids inFragaria vesca

Author:

Rai Arti,Skårn Magne Nordang,Elameen Abdelhameed,Tengs Torstein,Amundsen Mathias Rudolf,Bjorå Oskar S.,Haugland Lisa K.,Yakovlev Igor A.,Brurberg May Bente,Thorstensen TageORCID

Abstract

AbstractSecondary metabolites produced by the phenylpropanoid pathway, which is regulated by transcription factors of the MYB family, play crucial roles in this early phase of fruit development. The MYB46 transcription factor is a key regulator of secondary cell wall structure and lignin and flavonoid biosynthesis in many plants, but little is known about its activity in flowers and berries inF. vesca. For functional analysis of FvMYB46, we designed a CRISPR-Cas9 construct with an endogenousF. vescaspecific U6-promoter for efficient and specific expression of two gRNAs targeting the first exon ofFvMYB46. This generated mutants with an in frame 81-bp deletion of the first conserved MYB-domain or an out of frame 82-bp deletion potentially knocking out the gene function. In both types of mutant plants, pollen germination and the frequency of flowers developing to mature berries was significantly reduced compared to wild type. Transcriptomic analysis of flowers demonstrated that FvMYB46 is positively regulating the expression of genes involved in pollen germination, homeostasis of reactive oxygen species (ROS) and the phenylpropanoid pathway, including secondary cell wall biosynthesis and flavonoid biosynthesis, while has a negative impact on carbohydrate metabolism. In FvMYB46-mutant flowers, the flavonols and flavan-3-olscontent, especially epicatechin, quercetin-glucoside and kaempferol-3-coumaroylhexoside were reduced, and we observed a local reduction of lignin content in anthers. Together these results suggest that MYB46 control fertility and efficient fruit set by regulating cell wall structure, flavonoid biosynthesis, carbohydrate metabolism and ROS-signaling in flowers and early fruit development inF. vesca.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3