Genome-Wide Identification and Characterization of Long Non-Coding RNAs in Roots of Rice Seedlings under Nitrogen Deficiency

Author:

Qiu Dongfeng12,Wu Yan2,Xia Kuaifei3,Zhang Mingyong3ORCID,Zhang Zaijun2,Tian Zhihong1ORCID

Affiliation:

1. Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Life Science, Yangtze University, Jingzhou 434025, China

2. Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China

3. Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China

Abstract

Long non-coding RNAs (lncRNAs) regulate gene expression in eukaryotic organisms. Research suggests that lncRNAs may be involved in the regulation of nitrogen use efficiency in plants. In this study, we identified 1628 lncRNAs based on the transcriptomic sequencing of rice roots under low-nitrogen (LN) treatment through the implementation of an integrated bioinformatics pipeline. After 4 h of LN treatment, 50 lncRNAs and 373 mRNAs were significantly upregulated, and 17 lncRNAs and 578 mRNAs were significantly downregulated. After 48 h LN treatment, 43 lncRNAs and 536 mRNAs were significantly upregulated, and 42 lncRNAs and 947 mRNAs were significantly downregulated. Moreover, the interaction network among the identified lncRNAs and mRNAs was investigated and one of the LN-induced lncRNAs (lncRNA24320.6) was further characterized. lncRNA24320.6 was demonstrated to positively regulate the expression of a flavonoid 3′-hydroxylase 5 gene (OsF3′H5). The overexpression of lncRNA24320.6 was shown to improve nitrogen absorption and promote growth in rice seedlings under LN conditions. Our results provide valuable insights into the roles of lncRNAs in the rice response to nitrogen starvation.

Funder

National Nature Science Foundation of China

the Youth Project of Natural Science Foundation of Hubei Province

the Youth Science Foundation Project of Hubei Academy of Agricultural Sciences

the Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3