Functional analysis of the OsNPF4.5 nitrate transporter reveals a conserved mycorrhizal pathway of nitrogen acquisition in plants

Author:

Wang Shuangshuang,Chen AiqunORCID,Xie Kun,Yang Xiaofeng,Luo Zhenzhen,Chen Jiadong,Zeng Dechao,Ren Yuhan,Yang Congfan,Wang Lingxiao,Feng Huimin,López-Arredondo Damar LizbethORCID,Herrera-Estrella Luis RafaelORCID,Xu GuohuaORCID

Abstract

Low availability of nitrogen (N) is often a major limiting factor to crop yield in most nutrient-poor soils. Arbuscular mycorrhizal (AM) fungi are beneficial symbionts of most land plants that enhance plant nutrient uptake, particularly of phosphate. A growing number of reports point to the substantially increased N accumulation in many mycorrhizal plants; however, the contribution of AM symbiosis to plant N nutrition and the mechanisms underlying the AM-mediated N acquisition are still in the early stages of being understood. Here, we report that inoculation with AM fungusRhizophagus irregularisremarkably promoted rice (Oryza sativa) growth and N acquisition, and about 42% of the overall N acquired by rice roots could be delivered via the symbiotic route under N-NO3supply condition. Mycorrhizal colonization strongly induced expression of the putative nitrate transporter geneOsNPF4.5in rice roots, and its orthologsZmNPF4.5inZea maysandSbNPF4.5inSorghum bicolor. OsNPF4.5 is exclusively expressed in the cells containing arbuscules and displayed a low-affinity NO3transport activity when expressed inXenopus laevisoocytes. Moreover, knockout ofOsNPF4.5resulted in a 45% decrease in symbiotic N uptake and a significant reduction in arbuscule incidence when NO3was supplied as an N source. Based on our results, we propose that the NPF4.5 plays a key role in mycorrhizal NO3acquisition, a symbiotic N uptake route that might be highly conserved in gramineous species.

Funder

National Key Research and Developement Program/China

National Science Foundation of China

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3