Climate Overrides the Influence of Microsite Conditions on Radial Growth of the Tall Multi-Stemmed Shrub Alnus alnobetula at Treeline

Author:

Oberhuber Walter1ORCID,Dobler Anna-Lena1,Heinzle Tamara1,Scandurra Francesca1,Gruber Andreas1,Wieser Gerhard1ORCID

Affiliation:

1. Department of Botany, University of Innsbruck, A-6020 Innsbruck, Austria

Abstract

Green alder (Alnus alnobetula), a tall multi-stemmed deciduous shrub, is widespread at high elevations in the Central European Alps. Its growth form frequently leads to asymmetric radial growth and anomalous growth ring patterns, making development of representative ring-width series a challenge. In order to assess the variability among radii of one shoot, among shoots belonging to one stock and among stocks, 60 stem discs were sampled at treeline on Mt. Patscherkofel (Tyrol, Austria). Annual increments were measured along 188 radii and analyzed in terms of their variability by applying dendrochronological techniques. Results revealed a high agreement in ring-width variation among radii of one shoot, among shoots of one stock and largely among stocks from different sites, confirming the pronounced limitation of radial stem growth by climate forcing at the alpine treeline. In contrast to this, a high variability in both absolute growth rates and long-term growth trends was found, which we attribute to different microsite conditions and disturbances. These factors also override climate control of radial growth under growth-limiting environmental conditions. Based on our findings we provide recommendations for the number of samples needed to carry out inter- and intra-annual studies of radial growth in this multi-stemmed clonal shrub.

Funder

Austrian Science Fund

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3