Impact of Environmental Conditions on Wood Anatomical Traits of Green Alder (Alnus alnobetula) at the Alpine Treeline

Author:

Gruber Andreas1ORCID,Wieser Gerhard1ORCID,Fink Marion1,Oberhuber Walter1ORCID

Affiliation:

1. Department of Botany, Leopold-Franzens-University of Innsbruck, Sternwartestrasse 15, A-6020 Innsbruck, Austria

Abstract

Due to land use change, green alder (Alnus alnobetula), formerly restricted to moist slopes, is now expanding to drier sun-exposed sites at the alpine treeline. The highly productive shrub is forming closed thickets, establishing nitrogen-saturated species poor shrublands. To evaluate wood anatomical adaptations to changing environmental conditions, we analyzed vessel characteristics (mean vessel area, MVA; vessel density, VD; and theoretic conductive area, TCA) and axial parenchyma abundance, as well as their distribution in the annual ring at a moist north-facing and a dry south-facing site at the alpine treeline on Mt. Patscherkofel (Central European Alps, Austria). Results revealed that lower soil water availability and enhanced evaporative demand did not affect MVA while VD and TCA were significantly reduced at the dry south-facing site. This suggests that in green alder, vessel size is a static trait whereas vessel number responds plastic. Limited water availability also triggered a significant increase in axial parenchyma, confirming the important role of xylem parenchyma in water relations. Harsh environmental conditions at the distributional limit of green alder may have affected xylogenesis, leading to a near semi-ring-porous distribution of vessels and an accumulation of parenchyma in the late growing season. We conclude that in a warmer and drier climate, growth limitation and physiological stress may set limits to the distribution of Alnus alnobetula at drought-prone sites in the alpine treeline ecotone.

Funder

Austrian Science Fund

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3