Hydroponic and Aquaponic Floating Raft Systems Elicit Differential Growth and Quality Responses to Consecutive Cuts of Basil Crop

Author:

Modarelli Giuseppe Carlo1ORCID,Vanacore Lucia1,Rouphael Youssef1ORCID,Langellotti Antonio Luca2ORCID,Masi Paolo12ORCID,De Pascale Stefania1ORCID,Cirillo Chiara1ORCID

Affiliation:

1. Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy

2. Centre for Innovation and Development in the Food Industry (CAISIAL), University of Naples Federico II, Via Università 100, 80055 Portici, Italy

Abstract

Basil crops are appreciated for their distinct flavour and appeal to various cuisines globally. Basil production is mainly implemented in controlled environment agriculture (CEA) systems. Soil-less cultivation (e.g., hydroponic) is optimal for producing basil, while aquaponics is another technique suitable for leafy crops such as basil. Shortening the production chain through efficient cultivation techniques reduces basil production’s carbon footprint. While the organoleptic quality of basil demonstrably benefits from successive cuts, no studies have compared the impact of this practice under hydroponic and aquaponic CEA conditions. Hence, the present study evaluated the eco-physiological, nutritional, and productive performance of Genovese basil cv. Sanremo grown in hydroponic and aquaponic systems (combined with tilapia) and harvested consecutively. The two systems showed similar eco-physiological behaviour and photosynthetic capacity, which were on average 2.99 µmol of CO2 m−2 s−1, equal numbers of leaves, and fresh yields of on average 41.69 and 38.38 g, respectively. Aquaponics yielded greater dry biomass (+58%) and dry matter content (+37%), while the nutrient profiles varied between the systems. The number of cuts did not influence yield; however, it improved dry matter partitioning and elicited a differential nutrient uptake. Our results bear practical and scientific relevance by providing useful eco-physiological and productive feedback on basil CEA cultivation. Aquaponics is a promising technique that reduces chemical fertiliser input and increases the overall sustainability of basil production.

Funder

European Union’s Horizon 2020 research and innovation programme

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3