Drought Sensitivity of Spring Wheat Cultivars Shapes Rhizosphere Microbial Community Patterns in Response to Drought

Author:

Fang Jing1234,Shi Gongfu1,Wei Shuli1234,Ma Jie1234,Zhang Xiangqian234,Wang Jianguo234,Chen Liyu234,Liu Ying1234ORCID,Zhao Xiaoqing1234,Lu Zhanyuan1234

Affiliation:

1. School of Life Science, Inner Mongolia University, Hohhot 010020, China

2. Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China

3. Key Laboratory of Black Soil Protection and Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot 010031, China

4. Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot 010031, China

Abstract

Drought is the most important natural disaster affecting crop growth and development. Crop rhizosphere microorganisms can affect crop growth and development, enhance the effective utilization of nutrients, and resist adversity and hazards. In this paper, six spring wheat varieties were used as research material in the dry farming area of the western foot of the Greater Khingan Mountains, and two kinds of water control treatments were carried out: dry shed rain prevention (DT) and regulated water replenishment (CK). Phenotypic traits, including physiological and biochemical indices, drought resistance gene expression, soil enzyme activity, soil nutrient content, and the responses of potential functional bacteria and fungi under drought stress, were systematically analyzed. The results showed that compared with the control (CK), the leaf wilting, drooping, and yellowing of six spring wheat varieties were enhanced under drought (DT) treatment. The plant height, fresh weight (FW), dry weight (DW), net photosynthetic rate (Pn) and stomatal conductance (Gs), soil total nitrogen (TN), microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), microbial biomass phosphorus (MBP), organic carbon (SOC), and soil alkaline phosphatase (S-ALP) contents were significantly decreased, among which, FW, Gs and MBC decreased by more than 7.84%, 17.43% and 11.31%, respectively. By contrast, the soil total phosphorus (TP), total potassium (TK), and soil catalase (S-CAT) contents were significantly increased (p < 0.05). TaWdreb2 and TaBADHb genes were highly expressed in T.D40, T.L36, and T.L33 and were expressed at low levels in T.N2, T.B12, and T.F5. Among them, the relative expression of the TaWdreb2 gene in T.L36 was significantly increased by 2.683 times compared with CK. Soil TN and TP are the most sensitive to drought stress and can be used as the characteristic values of drought stress. Based on this, a drought-tolerant variety (T.L36) and a drought-sensitive variety (T.B12) were selected to further analyze the changes in rhizosphere microorganisms. Drought treatment and cultivar differences significantly affected the composition of the rhizosphere microbial community. Drought caused a decrease in the complexity of the rhizosphere microbial network, and the structure of bacteria was more complex than that of fungi. The Shannon index and network modular number of bacteria in these varieties (T.L36) increased, with rich small-world network properties. Actinobacteria, Chloroflexi, Firmicutes, Basidiomycota, and Ascomycota were the dominant bacteria under drought treatment. The beneficial bacteria Bacillus, Penicillium, and Blastococcus were enriched in the rhizosphere of T.L36. Brevibacillus and Glycomyce were enriched in the rhizosphere of T.B12. In general, drought can inhibit the growth and development of spring wheat, and spring wheat can resist drought hazards by regulating the expression of drought-related genes, regulating physiological metabolites, and enriching beneficial microorganisms.

Funder

Scientific and Technological Projects of Grassland Talents in Inner Mongolia Autonomous Region, the National Natural Science Foundation of China

The Leading Talent Project of “Science and Technology Leading Talent Team Project of Inner Mongolia Autonomous Region”

Inner Mongolia Agriculture and Animal Husbandry Innovation Fund Project

National Key Research and Development Program of China

Inner Mongolia Autonomous Region Natural Science Foundation Project Key Projects

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3