Soil Metagenomics Reveals Effects of Continuous Sugarcane Cropping on the Structure and Functional Pathway of Rhizospheric Microbial Community

Author:

Pang Ziqin,Dong Fei,Liu Qiang,Lin Wenxiong,Hu Chaohua,Yuan Zhaonian

Abstract

The continuous cropping of plants can result in the disruption of the soil microbial community and caused significant declines in yields. However, there are few reports on the effects of continuous cropping of sugarcane on the microbial community structure and functional pathway. In the current study, we analyzed the structural and functional changes of microbial community structure in the rhizospheric soil of sugarcane in different continuous cropping years using Illumina Miseq high-throughput sequencing and metagenomics analysis. We collected rhizosphere soils from fields of no continuous cropping history (NCC), 10 years of continuous cropping (CC10), and 30 years of continuous cropping (CC30) periods in the Fujian province. The results demonstrated that continuous sugarcane cropping resulted in significant changes in the physicochemical properties of soil and the composition of soil bacterial and fungal communities. With the continuous cropping, the crop yield dramatically declined from NCC to CC30. Besides, the redundancy analysis (RDA) of the dominant bacterial and fungal phyla and soil physicochemical properties revealed that the structures of the bacterial and fungal communities were mainly driven by pH and TS. Analysis of potential functional pathways during the continuous cropping suggests that different KEGG pathways were enriched in different continuous cropping periods. The significant reduction of bacteria associated with rhizospheric soil nitrogen and sulfur cycling functions and enrichment of pathogenic bacteria may be responsible for the reduction of effective nitrogen and total sulfur content in rhizospheric soil of continuous sugarcane as well as the reduction of sugarcane yield and sugar content. Additionally, genes related to nitrogen and sulfur cycling were identified in our study, and the decreased abundance of nitrogen translocation genes and AprAB and DsrAB in the dissimilatory sulfate reduction pathway could be the cause of declined biomass. The findings of this study may provide a theoretical basis for uncovering the mechanism of obstacles in continuous sugarcane cropping and provide better guidance for sustainable development of the sugarcane.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3