Synchronous Changes of GPP and Solar-Induced Chlorophyll Fluorescence in a Subtropical Evergreen Coniferous Forest

Author:

Wang Mingming12,Zhang Leiming12

Affiliation:

1. Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

2. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China

Abstract

Using in situ near-surface observations of solar-induced chlorophyll fluorescence (SIF) and gross primary productivity (GPP) of a subtropical evergreen coniferous forest in southern China, this study analyzed the dynamics of SIF, GPP and their environmental responses, and explored the potential of SIF in characterizing the variation of GPP. The results showed that SIF and GPP have similar diurnal and seasonal variation and both reach the highest value in summer, indicating that the SIF can be applied to indicate the seasonal variation of GPP for the subtropical evergreen co-niferous. With the increase in temporal scale, the correlation between SIF and GPP becomes more linear. The diurnal variations of both SIF and GPP were characterized by photosynthetically active radiation (PAR), the seasonal variations of SIF and GPP were influenced by air temperature (Ta) and PAR. Probably due to the absent of drought stress during the study period, no significant correlation was detected between soil water content (SWC) and either SIF or GPP. With the in-crease in Ta, PAR or SWC, the linear correlation between the SIF and GPP gradually decreased, and when Ta or PAR was relatively higher, the correlation between SIF and GPP become weakly. Further research is still needed to illustrate the relationship between SIF and GPP under drought condition which occurred frequently in this region based on longer observation.

Funder

Special Project on National Science and Technology Basic Resources Investigation of China

National Natural Science Foundation of China

Data reorganization and mining of ecosystem carbon, surface CH4 fluxes and wetland observation

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3