New Growth-Related Features of Wheat Grain Pericarp Revealed by Synchrotron-Based X-ray Micro-Tomography and 3D Reconstruction

Author:

Legland David12ORCID,Le Thang Duong Quoc12ORCID,Alvarado Camille1,Girousse Christine3ORCID,Chateigner-Boutin Anne-Laure1

Affiliation:

1. INRAE, UR BIA, 44316 Nantes, France

2. INRAE, PROBE Research Infrastructure, BIBS Facility, 44316 Nantes, France

3. INRAE, Université Clermont-Auvergne, UMR GDEC, 63000 Clermont-Ferrand, France

Abstract

Wheat (Triticum aestivum L.) is one of the most important crops as it provides 20% of calories and proteins to the human population. To overcome the increasing demand in wheat grain production, there is a need for a higher grain yield, and this can be achieved in particular through an increase in the grain weight. Moreover, grain shape is an important trait regarding the milling performance. Both the final grain weight and shape would benefit from a comprehensive knowledge of the morphological and anatomical determinism of wheat grain growth. Synchrotron-based phase-contrast X-ray microtomography (X-ray µCT) was used to study the 3D anatomy of the growing wheat grain during the first developmental stages. Coupled with 3D reconstruction, this method revealed changes in the grain shape and new cellular features. The study focused on a particular tissue, the pericarp, which has been hypothesized to be involved in the control of grain development. We showed considerable spatio-temporal diversity in cell shape and orientations, and in tissue porosity associated with stomata detection. These results highlight the growth-related features rarely studied in cereal grains, which may contribute significantly to the final grain weight and shape.

Funder

SOLEIL Synchrotron facility

Region Pays de la Loire

INRAE TRANSFORM

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3