Does Potassium Modify the Response of Zinnia (Zinnia elegans Jacq.) to Long-Term Salinity?

Author:

Bandurska Hanna1,Breś Włodzimierz1ORCID,Zielezińska Małgorzata1,Mieloszyk Elżbieta1

Affiliation:

1. Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland

Abstract

Salinity is one of the major abiotic stress factors hindering crop production, including ornamental flowering plants. The present study examined the response to salt stress of Zinnia elegans ‘Lilliput’ supplemented with basic (150 mg·dm−3) and enhanced (300 mg·dm−3) potassium doses. Stress was imposed by adding 0.96 and 1.98 g of NaCl per dm−3 of the substrate. The substrate’s electrical conductivity was 1.1 and 2.3 dS·m−1 for lower potassium levels and 1.2 and 2.4 dS·m−1 for higher potassium levels. Salt stress caused a significant and dose-dependent reduction in leaf RWC, increased foliar Na and Cl concentrations, and reduced K. About 15% and 25% of cell membrane injury at lower and higher NaCl doses, respectively, were accompanied by only slight chlorophyll reduction. Salt stress-induced proline increase was accompanied by increased P5CS activity and decreased PDH activity. More than a 25% reduction in most growth parameters at EC 1.1–1.2 dS·m−1 but only a slight decrease in chlorophyll and a 25% reduction in the decorative value (number of flowers produced, flower diameter) only at EC 2.3–2.4 dS·m−1 were found. Salt stress-induced leaf area reduction was accompanied by increased cell wall lignification. An enhanced potassium dose caused a reduction in leaf Na and Cl concentrations and a slight increase in K. It was also effective in membrane injury reduction and proline accumulation. Increasing the dose of potassium did not improve growth and flowering parameters but affected the lignification of the leaf cell walls, which may have resulted in growth retardation. Zinnia elegans ‘Lilliput’ may be considered sensitive to long-term salt stress.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference80 articles.

1. Halophytes: Potential resources for salt stress tolerance genes and promoters;Mishra;Front. Plant Sci.,2017

2. Seed priming to alleviate salinity stress in germinating seeds;Ibrahim;J Plant Physiol.,2016

3. World salinization with emphasis on Australia;Rengasamy;J. Exp. Bot.,2006

4. Causes of salinity and plant manifestations to salt stress: A review;Yadav;J. Environ. Biol.,2011

5. Regulation of plants metabolisms in response to salt stress: An omics approach;Singh;Acta Physiol. Plant.,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3