The Effect of Light and Dark Treatment on the Production of Rosmarinic Acid and Biological Activities in Perilla frutescens Microgreens

Author:

Lee Seom1,Yeo Hyeon Ji2,Lee Sang Yeob1,Kim Su Ryang1,Park Sang Un34ORCID,Park Chang Ha1

Affiliation:

1. Department of Biological Sciences, Keimyung University, 1095 Dalgubeol-daero, Daegu 42601, Republic of Korea

2. Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup 56212, Republic of Korea

3. Department of Crop Science, Chungnam National University, 99 Daehak-ro, Daejeon 34134, Republic of Korea

4. Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-ro, Daejeon 34134, Republic of Korea

Abstract

This study aimed to investigate the effect of light [a long-day photoperiod (16 h light/8 h dark cycle)] and dark treatment on the production of rosmarinic acid in P. frutescens microgreens and to determine its antioxidant and antibacterial activities. Microgreens of P. frutescens were grown under light and dark conditions and harvested after 10, 15, 20, and 25 days of each treatment. Although dry weight values of microgreens gradually increased from 10 to 25 days of both treatments, the microgreens grown under light treatment possessed slightly higher levels of dry weight than those grown in the dark. Rosmarinic acid and total phenolic content (TPC) were also analyzed using high-performance liquid chromatography (HPLC) and Folin–Ciocalteu assay. The accumulation patterns of rosmarinic acid and TPC gradually increased and decreased, respectively, in P. frutescens microgreens grown in continuous darkness. The highest accumulation was observed in microgreens grown for 20 days. However, rosmarinic acid and TPC values were not significantly different in microgreens grown under light conditions. According to the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical inhibition assay, the extracts of P. frutescens microgreens were confirmed to be strong antioxidants, and their ability to scavenge DPPH radicals was positively correlated with the total phenolic content in the microgreens after 10, 15, 20, and 25 days of both treatments. Considering the relatively higher values of dry weight, rosmarinic acid, TPC, and DPPH assay, P. frutescens microgreens after 20 days of darkness and 20 days of light treatment, respectively, were selected for screening antibacterial activity using nine pathogens. Both microgreen extracts showed strong antibacterial activity against pathogens. In particular, the extracts of microgreens grown for 20 days under light treatment showed higher antimicrobial effects. Therefore, the light treatments for 20 days, as well as the darkness treatment for 20 days, were the best conditions for P. frutescens microgreen production because of their high levels of dry weight, phenolics, and biological activities.

Funder

Ministry of Education

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3