Effects of Salt Tolerance Training on Multidimensional Root Distribution and Root-Shoot Characteristics of Summer Maize under Brackish Water Irrigation

Author:

Peng Suhan12,Ma Tao12ORCID,Ma Teng1,Chen Kaiwen1ORCID,Dai Yan1,Ding Jihui1,He Pingru1ORCID,Yu Shuang’en1

Affiliation:

1. College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China

2. Jiangsu Province Engineering Research Center for Agricultural Soil-Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing 211100, China

Abstract

To investigate the impact of brackish water irrigation on the multidimensional root distribution and root-shoot characteristics of summer maize under different salt-tolerance-training modes, a micro-plot experiment was conducted from June to October in 2022 at the experimental station in Hohai University, China. Freshwater irrigation was used as the control (CK), and different concentrations of brackish water (S0: 0.08 g·L−1, S1: 2.0 g·L−1, S2: 4.0 g·L−1, S3: 6.0 g·L−1) were irrigated at six-leaf stage, ten-leaf stage, and tasseling stage, constituting different salt tolerance training modes, referred to as S0-2-3, S0-3-3, S1-2-3, S1-3-3, S2-2-3, and S2-3-3. The results showed that although their fine root length density (FRLD) increased, the S0-2-3 and S0-3-3 treatments reduced the limit of root extension in the horizontal direction, causing the roots to be mainly distributed near the plants. This resulted in decreased leaf area and biomass accumulation, ultimately leading to significant yield reduction. Additionally, the S2-2-3 and S2-3-3 treatments stimulated the adaptive mechanism of maize roots, resulting in boosted fine root growth to increase the FRLD and develop into deeper soil layers. However, due to the prolonged exposure to a high level of salinity, their roots below 30 cm depth senesced prematurely, leading to an inhibition in shoot growth and also resulting in yield reduction of 10.99% and 11.75%, compared to CK, respectively. Furthermore, the S1-2-3 and S1-3-3 treatments produced more reasonable distributions of FRLD, which did not boost fine root growth but established fewer weak areas (FLRD < 0.66 cm−3) in their root systems. Moreover, the S1-2-3 treatment contributed to increasing leaf development and biomass accumulation, compared to CK, whereas it allowed for minimizing yield reduction. Therefore, our study proposed the S1-2-3 treatment as the recommended training mode for summer maize while utilizing brackish water resources.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3