Irrigation Induced Salinity and Sodicity Hazards on Soil and Groundwater: An Overview of Its Causes, Impacts and Mitigation Strategies

Author:

Mohanavelu AadhityaaORCID,Naganna Sujay RaghavendraORCID,Al-Ansari NadhirORCID

Abstract

Salinity and sodicity have been a major environmental hazard of the past century since more than 25% of the total land and 33% of the irrigated land globally are affected by salinity and sodicity. Adverse effects of soil salinity and sodicity include inhibited crop growth, waterlogging issues, groundwater contamination, loss in soil fertility and other associated secondary impacts on dependent ecosystems. Salinity and sodicity also have an enormous impact on food security since a substantial portion of the world’s irrigated land is affected by them. While the intrinsic nature of the soil could cause soil salinity and sodicity, in developing countries, they are also primarily caused by unsustainable irrigation practices, such as using high volumes of fertilizers, irrigating with saline/sodic water and lack of adequate drainage facilities to drain surplus irrigated water. This has also caused irreversible groundwater contamination in many regions. Although several remediation techniques have been developed, comprehensive land reclamation still remains challenging and is often time and resource inefficient. Mitigating the risk of salinity and sodicity while continuing to irrigate the land, for example, by growing salt-resistant crops such as halophytes together with regular crops or creating artificial drainage appears to be the most practical solution as farmers cannot halt irrigation. The purpose of this review is to highlight the global prevalence of salinity and sodicity in irrigated areas, highlight their spatiotemporal variability and causes, document the effects of irrigation induced salinity and sodicity on physicochemical properties of soil and groundwater, and discuss practical, innovative, and feasible practices and solutions to mitigate the salinity and sodicity hazards on soil and groundwater.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3