Growth and Physiological Response of Viola tricolor L. to NaCl and NaHCO3 Stress

Author:

Liu Xiaoe,Su Shiping

Abstract

Soil salinization is an important environmental problem worldwide and has a significant impact on the growth of plants. In recent years, the mechanisms of plant salt tolerance have received extensive attention from researchers. In this paper, an experiment was implemented to assess the potential effect of different NaCl and NaHCO3 (sodium bicarbonate—an alkaline salt) concentrations (25 mmol·L−1, 50 mmol·L−1, 100 mmol·L−1, 150 mmol·L−1 and 200 mmol·L−1) on the growth, antioxidant enzymes, osmoprotectants, photosynthetic pigments and MDA of Viola tricolor L. to reveal the physiological response and explore the maximum concentrations of NaCl and NaHCO3 stress that V. tricolor can tolerate. The results showed that NaCl and NaHCO3 treatments had significant effects on osmoprotectants, antioxidant enzymes, photosynthetic pigments, MDA content and the plant height growth of V. tricolor. On day 14 of the NaCl and NaHCO3 stress, the height growth of V. tricolor was significantly greater than CK when the concentration of NaCl and NaHCO3 was less than 100 mmol·L−1. Soluble protein (SP) was significantly greater than CK when the NaCl concentration was less than 150 mmol·L−1 and the NaHCO3 concentration was less than 200 mmol·L−1; soluble sugar (SS) was significantly greater than CK under all NaCl and NaHCO3 treatments; proline (Pro) was significantly greater than CK when the NaCl concentration was 150 mmol·L−1 and the NaHCO3 concentration were 150 and 200 mmol·L−1, respectively. Peroxidase (POD) was significantly greater than CK when the NaCl concentration was less than 200 mmol·L−1 and the NaHCO3 concentration was less than 150 mmol·L−1; superoxide dismutase (SOD) was significantly greater than CK when the NaCl concentration was 50 mmol·L−1 and the NaHCO3 concentrations were 50, 100 and 150 mmol·L−1, respectively; catalase (CAT) was significantly greater than CK when the NaCl and NaHCO3 concentrations were 25, 50 and 100 mmol·L−1, respectively. Chlorophyll (Chl) was significantly lower than CK when the NaCl and NaHCO3 concentrations were greater than 100 mmol·L−1. Malondialdehyde (MDA) gradually increased with the increase in the NaCl and NaHCO3 concentrations. Membership function analysis showed that the concentrations of NaCl and NaHCO3 that V. tricolor was able to tolerate were 150 mmol·L−1 and 200 mmol·L−1, respectively. Beyond these thresholds, osmoprotectants and antioxidant enzymes were seriously affected, Chl degradation intensified, the photosynthetic system was seriously damaged, and the growth of V. tricolor was severely affected. According to a comprehensive ranking of results, the degree of NaCl stress on V. tricolor was lower than that from NaHCO3 when the treatment concentration was lower than 50 mmol·L−1, but higher than that from NaHCO3 when it exceeded 50 mmol·L−1.

Funder

Science and Technology program of Gansu Province

Young Doctoral Fund of Gansu Province

National Natural Science Fund

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3