Improving strawberry plant resilience to salinity and alkalinity through the use of diverse spectra of supplemental lighting

Author:

Malekzadeh Mohammad Reza,Roosta Hamid Reza,Esmaeilizadeh Majid,Dabrowski Piotr,Kalaji Hazem M.

Abstract

Abstract Background This study explores the impact of various light spectra on the photosynthetic performance of strawberry plants subjected to salinity, alkalinity, and combined salinity/alkalinity stress. We employed supplemental lighting through Light-emitting Diodes (LEDs) with specific wavelengths: monochromatic blue (460 nm), monochromatic red (660 nm), dichromatic blue/red (1:3 ratio), and white/yellow (400–700 nm), all at an intensity of 200 µmol m-2 S-1. Additionally, a control group (ambient light) without LED treatment was included in the study. The tested experimental variants were: optimal growth conditions (control), alkalinity (40 mM NaHCO3), salinity (80 mM NaCl), and a combination of salinity/alkalinity. Results The results revealed a notable decrease in photosynthetic efficiency under both salinity and alkalinity stresses, especially when these stresses were combined, in comparison to the no-stress condition. However, the application of supplemental lighting, particularly with the red and blue/red spectra, mitigated the adverse effects of stress. The imposed stress conditions had a detrimental impact on both gas exchange parameters and photosynthetic efficiency of the plants. In contrast, treatments involving blue, red, and blue/red light exhibited a beneficial effect on photosynthetic efficiency compared to other lighting conditions. Further analysis of JIP-test parameters confirmed that these specific light treatments significantly ameliorated the stress impacts. Conclusions In summary, the utilization of blue, red, and blue/red light spectra has the potential to enhance plant resilience in the face of salinity and alkalinity stresses. This discovery presents a promising strategy for cultivating plants in anticipation of future challenging environmental conditions.

Publisher

Springer Science and Business Media LLC

Reference76 articles.

1. Capula-Rodríguez R, Valdez-Aguilar LA, Cartmill DL, Cartmill AD, Alia-Tejacal I. Supplementary calcium and potassium improve the response of tomato (Solanum lycopersicum L.) to simultaneous alkalinity, salinity, and boron stress. Commun Soil Sci Plant Anal. 2016;47(4):505–11.

2. Ghazali MF, Wikantika K, Harto AB, Kondoh A. Generating soil salinity, soil moisture, soil pH from satellite imagery and its analysis. Inf Process Agric. 2020;7:294–306.

3. Lin J, Yu D, Shi Y, Sheng H, Li C, Wang Y, et al. Salt-alkali tolerance during germination and establishment of Leymus chinensis in the Songnen Grassland of China. Ecol Eng. 2016;95:763–9.

4. Yang JY, Zheng W, Tian Y, Wu Y, Zhou DW. Effects of various mixed salt-alkaline stresses on growth, photosynthesis, and photosynthetic pigment concentrations of Medicago ruthenica seedlings. Photosynthetica. 2011;49:275–84.

5. Shi D, Sheng Y. Effect of various salt–alkaline mixed stress conditions on sunflower seedlings and analysis of their stress factors. Environ Exp Bot. 2005;54:8–21.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3