Effects of Drought Stress Induced by Hypertonic Polyethylene Glycol (PEG-6000) on Passiflora edulis Sims Physiological Properties

Author:

Qi Ying123,Ma Lingling123,Ghani Muhammad Imran1234,Peng Qiang123,Fan Ruidong123,Hu Xiaojing123,Chen Xiaoyulong234

Affiliation:

1. College of Agriculture, Guizhou University, Guiyang 550025, China

2. International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang 550025, China

3. Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center, Guizhou Provincial Science and Technology Department, Guizhou University, Guiyang 550025, China

4. College of Life Sciences, Guizhou University, Guiyang 550025, China

Abstract

Passion fruit is known to be sensitive to drought, and in order to study the physiological and biochemical changes that occur in passion fruit seedlings under drought stress, a hypertonic polyethylene glycol (PEG) solution (5%, 10%, 15%, and 20%) was used to simulate drought stress in passion fruit seedlings. We explored the physiological changes in passion fruit seedlings under drought stress induced by PEG to elucidate their response to drought stress and provide a theoretical basis for drought-resistant cultivation of passion fruit seedlings. The results show that drought stress induced by PEG had a significant effect on the growth and physiological indices of passion fruit. Drought stress significantly decreased fresh weight, chlorophyll content, and root vitality. Conversely, the contents of soluble protein (SP), proline (Pro), and malondialdehyde (MDA) increased gradually with the increasing PEG concentration and prolonged stress duration. After nine days, the SP, Pro and MDA contents were higher in passion fruit leaves and roots under 20% PEG treatments compared with the control. Additionally, with the increase in drought time, the activities of antioxidant enzymes such as peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT) showed an increasing trend and then a decreasing trend, and they reached the highest value at the sixth day of drought stress. After rehydration, SP, Pro and MDA contents in the leaves and roots of passion fruit seedlings was reduced. Among all the stress treatments, 20% PEG had the most significant effect on passion fruit seedlings. Therefore, our study demonstrated sensitive concentrations of PEG to simulate drought stress on passion fruit and revealed the physiological adaptability of passion fruit to drought stress.

Funder

Guizhou Province Science and Technology Planning Project

Science and Technology Base & Talent Project of Guangxi Province

National Key Research and Development Program of China

Guizhou Province Graduate Research

Guizhou University Lab Opening Project

Guizhou University Cultivation Project

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3