Effects of Progressive Drought Stress on the Growth, Ornamental Values, and Physiological Properties of Begonia semperflorens

Author:

Zhao Zhimin1,Liu Airong2,Zhang Yuanbing3,Yang Xiaodong4,Yang Shuyue1,Zhao Kunkun3

Affiliation:

1. College of Agriculture, Anhui Science and Technology University, Donghua Road No. 9, Chuzhou 233100, China

2. College of Life and Health Sciences, Anhui Science and Technology University, Donghua Road No. 9, Chuzhou 233100, China

3. College of Architecture, Anhui Science and Technology University, Donghua Road No. 9, Chuzhou 233100, China

4. College of Environmental Ecology, Jiangsu Open University, Jiangdong North Road No. 399, Nanjing 210036, China

Abstract

Water is one of the most important elements affecting the growth of ornamental plants. To investigate the effects of drought stress on the growth, ornamental values, and physiological properties of Begonia semperflorens, watering treatments with 250 mL (control check, CK), 200 mL (extremely light drought, ELD), 150 mL (light drought, LD), 100 mL (moderate drought, MD), 50 mL (severe drought, SD), and 25 mL (extremely severe drought, ESD) on the B. semperflorens variety “Chao Ao” were performed in this study. As a result, compared to the control (CK), the number of flowers, leaves, and branches, leaf size, plant height, crown diameter, as well as water content, transpiration rate, net photosynthetic rate, stomatal conductance, intercellular CO2 concentration, and chlorophyll content in leaves decreased, followed by an increased amount of drought stress. The contents of the osmotic adjustment substances, such as soluble sugar, soluble protein, proline, and betaine, were increased under drought stress. Indicators related to antioxidant activities, such as SOD activity, increased and then decreased. The POD activity, CAT activity, MDA content, and plasma membrane permeability of B. semperflorens were higher under increased drought stress than in the control condition. The APX activity decreased and then increased under drought stress. In conclusion, B. semperflorens responds to drought stress by increasing osmotic adjustment substances and antioxidant activities and reducing the water loss, growth potential, and photosynthetic rate. The correlation analysis showed that, except for APX, the drought resistance coefficients of 23 other indexes were correlated in different degrees. Therefore, this study suggests that B. semperflorens has a strong drought resistance ability, retaining high ornamental values in conditions of moderate drought stress, and can still survive under extremely high drought stress.

Funder

Key Projects of Natural Science Research in the colleges and universities of Anhui

Science and Technology Plan Project of Anhui Housing Construction Department

Key Research Project of Chuzhou

Anhui Science and Technology University

Natural Science Foundation of Zhejiang Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3