Evaluation of Solidification and Interfacial Reaction of Sn-Bi and Sn-Bi-In Solder Alloys in Copper and Nickel Interfaces

Author:

Leal Jaderson Rodrigo da Silva1,Reyes Rodrigo André Valenzuela1,Gouveia Guilherme Lisboa de1ORCID,Coury Francisco Gil2,Spinelli José Eduardo2ORCID

Affiliation:

1. Graduate Program in Materials Science and Engineering, Federal University of Sao Carlos, Sao Carlos 13565905, SP, Brazil

2. Department of Materials Engineering, Federal University of Sao Carlos–UFSCar, Sao Carlos 13565905, SP, Brazil

Abstract

Although there are studies devoted to lower Indium (In) addition, Sn-Bi alloys containing 10 wt.% In or more have been barely investigated so far. Higher In contents may offer the potential for improved joint production, better control over the growth of interfacial layers, and enhanced mechanical strength. The present article focuses on the solidification, wettability, adhesion strength, and interfacial intermetallic growth in the Sn-40%Bi-10%In alloy soldered on Cu and Ni pads. SEM-EDS, wettability tests, and tensile tests were performed. The contact angles were measured in Cu and Ni as 24° and 26°, respectively. Indium addition promoted coarsening of the as-solidified microstructure due to an increase in the alloy solidification range. The Bi spacing was increased at least three times, with a strong segregation of Bi towards the interface. The formation and growth of alloy/Cu reaction layers were also evaluated under the different aging conditions of the as-soldered joints, simulating real service. A growth kinetics model of the reaction layer showed that In increases the activation energy, thereby reducing the layer growth. The adhesions of the formed intermetallics films in Cu and Ni were analyzed using tensile tests. It was observed that the alloy/Ni couple exhibited better adhesion. Premature fracturing appears to happen in the alloy/Cu joint due to the higher intermetallic compound’s (IMC) thickness, rough morphology, and coarser microstructure. Both ductile fracture features with dimples and cleavage zones associated with Bi, Cu6(Sn,In)5, and Ni3Sn4 intermetallics were observed.

Funder

CNPq—National Council for Scientific and Technological Development

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3