Abstract
Tungsten (W) has the unique combination of excellent thermal properties, low sputter yield, low hydrogen retention, and acceptable activation. Therefore, W is presently the main candidate for the first wall and armor material for future fusion devices. However, its intrinsic brittleness and its embrittlement during operation bears the risk of a sudden and catastrophic component failure. As a countermeasure, tungsten fiber-reinforced tungsten (Wf/W) composites exhibiting extrinsic toughening are being developed. A possible Wf/W production route is chemical vapor deposition (CVD) by reducing WF6 with H2 on heated W fabrics. The challenge here is that the growing CVD-W can seal gaseous domains leading to strength reducing pores. In previous work, CVD models for Wf/W synthesis were developed with COMSOL Multiphysics and validated experimentally. In the present article, these models were applied to conduct a parameter study to optimize the coating uniformity, the relative density, the WF6 demand, and the process time. A low temperature and a low total pressure increase the process time, but in return lead to very uniform W layers at the micro and macro scales and thus to an optimized relative density of the Wf/W composite. High H2 and low WF6 gas flow rates lead to a slightly shorter process time and an improved coating uniformity as long as WF6 is not depleted, which can be avoided by applying the presented reactor model.
Subject
General Materials Science,Metals and Alloys
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献