Large-Scale Tungsten Fibre-Reinforced Tungsten and Its Mechanical Properties

Author:

Schwalenberg Daniel,Coenen Jan WillemORCID,Riesch Johann,Hoeschen TillORCID,Mao Yiran,Lau AlexanderORCID,Gietl HannsORCID,Raumann LeonardORCID,Huber PhilippORCID,Linsmeier ChristianORCID,Neu RudolfORCID

Abstract

Tungsten-fibre-reinforced tungsten composites (Wf/W) have been in development to overcome the inherent brittleness of tungsten as one of the most promising candidates for the first wall and divertor armour material in a future fusion power plant. As the development of Wf/W continues, the fracture toughness of the composite is one of the main design drivers. In this contribution, the efforts on size upscaling of Wf/W based on Chemical Vapour Deposition (CVD) are shown together with fracture mechanical tests of two different size samples of Wf/W produced by CVD. Three-point bending tests according to American Society for Testing and Materials (ASTM) Norm E399 for brittle materials were used to obtain a first estimation of the toughness. A provisional fracture toughness value of up to 346MPam1/2 was calculated for the as-fabricated material. As the material does not show a brittle fracture in the as-fabricated state, the J-Integral approach based on the ASTM E1820 was additionally applied. A maximum value of the J-integral of 41kJ/m2 (134.8MPam1/2) was determined for the largest samples. Post mortem investigations were employed to detail the active mechanisms and crack propagation.

Funder

European Union via the Euratom Research and Training Programme

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3