Correlating Prior Austenite Grain Microstructure, Microscale Deformation and Fracture of Ultra-High Strength Martensitic Steels

Author:

Zheng Xinzhu,Ghassemi-Armaki Hassan,Hartwig Karl T.,Srivastava AnkitORCID

Abstract

Herein, we correlate the prior austenite grain (PAG) microstructure to deformation and fracture mechanisms of an ultra-high strength martensitic steel. To this end, a low-carbon martensitic steel is subjected to five heat-treatments and the PAG microstructure in the material is reconstructed from the EBSD inverse pole figure maps of the martensitic microstructure. The deformation and fracture response of all heat-treated materials are characterized by in situ tension tests of dog-bone and single-edge notch specimens that allow us to capture both the macroscopic mechanical response and the evolution of microscopic strains via microscale digital image correlation. The experimental results, together with microstructure-based finite element analysis, are then used to elucidate the effect of the PAG microstructure on the mechanical response of the material. Our results show that the interaction between the heterogeneous deformation fields induced by the notch and the bimodal PAG size distribution leads to an increase in the propensity of shear deformation and degradation in the fracture response of the material with increasing heat-treatment temperature and time. Our results also suggest that achieving a unform distribution of fine grains is an effective way to enhance both the strength and fracture properties of this class of materials.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference44 articles.

1. Advanced high strength steels for automotive industry

2. Materials for Automobile Bodies; Butterworth-Heinemann;Davies,2012

3. Reducing Vehicle Weight and Improving U.S. Energy Efficiency Using Integrated Computational Materials Engineering

4. Driving Force and Logic of Development of Advanced High Strength Steels for Automotive Applications

5. Ultra-High-Strength, Quench-type, Hot-Rolled Steel Sheets of 1620 MPa Grade for Automobile Door Impact Beams;Sato;Kobelco Technol. Rev.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3