Abstract
We present a new method for real-time runway detection embedded in synthetic vision and an ROI (Region of Interest) based level set method. A virtual runway from synthetic vision provides a rough region of an infrared runway. A three-thresholding segmentation is proposed following Otsu’s binarization method to extract a runway subset from this region, which is used to construct an initial level set function. The virtual runway also gives a reference area of the actual runway in an infrared image, which helps us design a stopping criterion for the level set method. In order to meet the needs of real-time processing, the ROI based level set evolution framework is implemented in this paper. Experimental results show that the proposed algorithm is efficient and accurate.
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献