A Multi-Feature Fusion-Based Method for Crater Extraction of Airport Runways in Remote-Sensing Images

Author:

Zhao Yalun1,Chen Derong1,Gong Jiulu1

Affiliation:

1. School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China

Abstract

Due to the influence of the complex background of airports and damaged areas of the runway, the existing runway extraction methods do not perform well. Furthermore, the accurate crater extraction of airport runways plays a vital role in the military fields, but there are few related studies on this topic. To solve these problems, this paper proposes an effective method for the crater extraction of runways, which mainly consists of two stages: airport runway extraction and runway crater extraction. For the previous stage, we first apply corner detection and screening strategies to runway extraction based on multiple features of the runway, such as high brightness, regional texture similarity, and shape of the runway to improve the completeness of runway extraction. In addition, the proposed method can automatically realize the complete extraction of runways with different degrees of damage. For the latter stage, the craters of the runway can be extracted by calculating the edge gradient amplitude and grayscale distribution standard deviation of the candidate areas within the runway extraction results. In four typical remote-sensing images and four post-damage remote-sensing images, the average integrity of the runway extraction reaches more than 90%. The comparative experiment results show that the extraction effect and running speed of our method are both better than those of state-of-the-art methods. In addition, the final experimental results of crater extraction show that the proposed method can effectively extract craters of airport runways, and the extraction precision and recall both reach more than 80%. Overall, our research is of great significance to the damage assessment of airport runways based on remote-sensing images in the military fields.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3