COVID-19 Detection from Chest X-ray Images Based on Deep Learning Techniques

Author:

Mathesul Shubham1,Swain Debabrata2ORCID,Satapathy Santosh Kumar3,Rambhad Ayush1,Acharya Biswaranjan4ORCID,Gerogiannis Vassilis C.5ORCID,Kanavos Andreas6ORCID

Affiliation:

1. Department of Computer Science and Engineering, Vishwakarma Institute of Technology, Pune 411037, India

2. Department of Computer Science and Engineering, Pandit Deendayal Energy University, Gandhinagar 382007, India

3. Department of Information and Communication Technology, Pandit Deendayal Energy University, Gandhinagar 382007, India

4. Department of Computer Engineering AI, Marwadi University, Rajkot 360003, India

5. Department of Digital Systems, University of Thessaly, 41500 Larissa, Greece

6. Department of Informatics, Ionian University, 49100 Corfu, Greece

Abstract

The COVID-19 pandemic has posed significant challenges in accurately diagnosing the disease, as severe cases may present symptoms similar to pneumonia. Real-Time Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) is the conventional diagnostic technique; however, it has limitations in terms of time-consuming laboratory procedures and kit availability. Radiological chest images, such as X-rays and Computed Tomography (CT) scans, have been essential in aiding the diagnosis process. In this research paper, we propose a deep learning (DL) approach based on Convolutional Neural Networks (CNNs) to enhance the detection of COVID-19 and its variants from chest X-ray images. Building upon the existing research in SARS and COVID-19 identification using AI and machine learning techniques, our DL model aims to extract the most significant features from the X-ray scans of affected individuals. By employing an explanatory CNN-based technique, we achieved a promising accuracy of up to 97% in detecting COVID-19 cases, which can assist physicians in effectively screening and identifying probable COVID-19 patients. This study highlights the potential of DL in medical imaging, specifically in detecting COVID-19 from radiological images. The improved accuracy of our model demonstrates its efficacy in aiding healthcare professionals and mitigating the spread of the disease.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3