Rapid Discrimination of Neuromyelitis Optica Spectrum Disorder and Multiple Sclerosis Using Machine Learning on Infrared Spectra of Sera

Author:

El Khoury YoussefORCID,Gebelin Marie,de Sèze Jérôme,Patte-Mensah Christine,Marcou GillesORCID,Varnek AlexandreORCID,Mensah-Nyagan Ayikoé-GuyORCID,Hellwig PetraORCID,Collongues NicolasORCID

Abstract

Neuromyelitis optica spectrum disorder (NMOSD) and multiple sclerosis (MS) are both autoimmune inflammatory and demyelinating diseases of the central nervous system. NMOSD is a highly disabling disease and rapid introduction of the appropriate treatment at the acute phase is crucial to prevent sequelae. Specific criteria were established in 2015 and provide keys to distinguish NMOSD and MS. One of the most reliable criteria for NMOSD diagnosis is detection in patient’s serum of an antibody that attacks the water channel aquaporin-4 (AQP-4). Another target in NMOSD is myelin oligodendrocyte glycoprotein (MOG), delineating a new spectrum of diseases called MOG-associated diseases. Lastly, patients with NMOSD can be negative for both AQP-4 and MOG antibodies. At disease onset, NMOSD symptoms are very similar to MS symptoms from a clinical and radiological perspective. Thus, at first episode, given the urgency of starting the anti-inflammatory treatment, there is an unmet need to differentiate NMOSD subtypes from MS. Here, we used Fourier transform infrared spectroscopy in combination with a machine learning algorithm with the aim of distinguishing the infrared signatures of sera of a first episode of NMOSD from those of a first episode of relapsing-remitting MS, as well as from those of healthy subjects and patients with chronic inflammatory demyelinating polyneuropathy. Our results showed that NMOSD patients were distinguished from MS patients and healthy subjects with a sensitivity of 100% and a specificity of 100%. We also discuss the distinction between the different NMOSD serostatuses. The coupling of infrared spectroscopy of sera to machine learning is a promising cost-effective, rapid and reliable differential diagnosis tool capable of helping to gain valuable time in patients’ treatment.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3