Carbon Pools in a 77 Year-Old Oak Forest under Conversion from Coppice to High Forest

Author:

Ganatsas PetrosORCID,Tsakaldimi MarianthiORCID,Karydopoulos TheodorosORCID,Petaloudi Lydia-Maria,Papaemmanouil Alexandros,Papadopoulos Sotirios,Gerochristou Sofia

Abstract

Recent model projections and many research results across the world suggest that forests could be significant carbon sinks or sources in the future, contributing in a such a way to global warming mitigation. Conversion of coppice forest to high forest may play an important role towards this direction. This study deals with the estimation of biomass, carbon pool and accumulation rates in all IPCC biomass categories of a 77 year-old oak ecosystem, which has been subjected to conversion from coppice to high forest through repeated tending measures. The research includes a plethora of field tree measurements, destructive sampling of representative oak trees and a systematic sampling of dead wood (standing and fallen), litter and soil. Furthermore, for the estimation of above ground tree living biomass at the stand level, we developed and tested appropriate allometric biomass equations based on the relationships between various independent tree variables (morphological characteristics) and the different tree biomass compartments or leaf biomass. Data analysis shows that coppice conversion results in large accumulation of carbon in all ecosystem pools, with an average annual carbon rate accumulation of 1.97 Mg ha–1 in living above and below ground tree biomass and small amounts to dead wood and litter. The developed allometric equations indicate that above ground tree living biomass can be reliable and precisely predicted by the simple measurement of tree diameter.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3