Carbon Sequestration Dynamics in Peri-Urban Forests: Comparing Secondary Succession and Mature Stands under Varied Forest Management Practices

Author:

Braga Cosmin Ion1ORCID,Petrea Stefan12ORCID,Radu Gheorghe Raul1,Cucu Alexandru Bogdan1ORCID,Serban Tibor1,Zaharia Alexandru1,Leca Stefan1

Affiliation:

1. National Institute for Research and Development in Forestry “Marin Drăcea”, 128 Eroilor Boulevard, 077190 Voluntari, Romania

2. Faculty of Silviculture and Forest Engineering, “Transilvania” University of Brașov, Șirul Beethoven 1, 500123 Brașov, Romania

Abstract

This study examines the impact of silvicultural and land-use management practices on carbon sequestration in peri-urban forest ecosystems, with a particular focus on human-induced carbon dynamics. The study area’s complex profile spans from a compact native forest to varying degrees of fragmentation. This included areas undergoing secondary succession forest without silvicultural interventions (No-SI) alongside sites subjected to high-intensity (High-SI) and low-intensity silvicultural interventions (Low-SI). The research assessed carbon stocks and sequestration in different carbon pools (living biomass, dead organic matter and soil) using field data, allometric equations and laboratory analysis. Findings reveal a significant correlation between the intensity of anthropogenic interventions and variations in carbon stocks. The CASMOFOR model facilitated the reconstruction of carbon stock and carbon-stock change dynamics over four decades (1980–2022), showing disparities in carbon storage capabilities linked to the structural characteristics of the sites. The Low-SI site had the highest carbon stock in all carbon pools (378 tonnes C ha−1), which is more than double compared to High-SI (161 tonnes C ha−1) or No-SI sites (134 tonnes C ha−1). However, the secondary succession forest (No-SI) demonstrated the highest annual carbon stock change (4.4 tonnes C ha−1 year−1), two times higher than the Low-SI mature stand (2.2 tonnes C ha−1 year−1), emphasising the resilience of forest ecosystems to recover and sustain carbon sequestration capacities after harvesting if forest land use remains unchanged. The study underscores the significant importance of anthropogenic interventions on carbon dynamics, especially for living tree biomass, which has consequences in enhancing carbon sequestration and contributing to emission reduction targets.

Funder

Ministry of Research, Innovation and Digitization

Ministry of Water, Environment and Forests

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3