Optimal Compensation of MEMS Gyroscope Noise Kalman Filter Based on Conv-DAE and MultiTCN-Attention Model in Static Base Environment

Author:

Huo ZiminORCID,Wang Fuchao,Shen HonghaiORCID,Sun XinORCID,Zhang Jingzhong,Li Yaobin,Chu Hairong

Abstract

Errors in microelectromechanical systems (MEMS) inertial measurement units (IMUs) are large, complex, nonlinear, and time varying. The traditional noise reduction and compensation methods based on traditional models are not applicable. This paper proposes a noise reduction method based on multi-layer combined deep learning for the MEMS gyroscope in the static base state. In this method, the combined model of MEMS gyroscope is constructed by Convolutional Denoising Auto-Encoder (Conv-DAE) and Multi-layer Temporal Convolutional Neural with the Attention Mechanism (MultiTCN-Attention) model. Based on the robust data processing capability of deep learning, the noise features are obtained from the past gyroscope data, and the parameter optimization of the Kalman filter (KF) by the Particle Swarm Optimization algorithm (PSO) significantly improves the filtering and noise reduction accuracy. The experimental results show that, compared with the original data, the noise standard deviation of the filtering effect of the combined model proposed in this paper decreases by 77.81% and 76.44% on the x and y axes, respectively; compared with the existing MEMS gyroscope noise compensation method based on the Autoregressive Moving Average with Kalman filter (ARMA-KF) model, the noise standard deviation of the filtering effect of the combined model proposed in this paper decreases by 44.00% and 46.66% on the x and y axes, respectively, reducing the noise impact by nearly three times.

Funder

the Scientific research business fee fund of Heilongjiang provincial scientific research institutes, Research on Key Technologies of wide area forest and grass fire aerial monitoring and early warning

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3