Abstract
To realize high-performance control for the inertially stabilized platform, a compound control method based on the adaptive linear extended state observer and global fast terminal sliding mode control is proposed. For estimating the unknown disturbances of inertially stabilized platform, an adaptive linear extended state observer was developed. With the full use of the information of attitude and angular velocity, the adaptive bandwidth of an adaptive linear extended state observer can deal with the peaking phenomenon without introducing excessive noise. Furthermore, the adaptation law based on the global fast terminal sliding mode control for disturbance estimation compensation was developed, which can improve the disturbance estimation accuracy of the adaptive linear extended state observer, and the higher order terminal function in global fast terminal sliding mode control was replaced by the lumped disturbance estimation of adaptive linear extended state observer, which can improve the anti-interference ability of inertially stabilized platform, reduce the chattering problem, and improve the control performance. The asymptotic stability of the proposed control method has been proven by the Lyapunov stability theory. The effectiveness of the proposed method was validated by a series of simulations and experiments.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献